Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n r 1 (mod m 1 ) gcd(m i , m j ) = 1 r (mod m ) r 2 (mod m 2 ) • • • r k (mod m k ) 1
Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n r 1 (mod m 1 ) gcd(m i , m j ) = 1 solution: r (mod m ) r 2 (mod m 2 ) m = m 1 m 2 ꞏ ꞏ ꞏ m k • • • r k (mod m k ) z i = m / m i -1 1 (mod m i ) (since gcd(z i , m i ) = 1) * z i -1 Z mi s.t. z i ꞏ z i k k n z i ꞏ z i -1 ꞏ r i (mod m) i=1 1
Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n r 1 (mod m 1 ) gcd(m i , m j ) = 1 solution: r (mod m ) r 2 (mod m 2 ) m = m 1 m 2 ꞏ ꞏ ꞏ m k • • • r k (mod m k ) z i = m / m i -1 1 (mod m i ) (since gcd(z i , m i ) = 1) * z i -1 Z mi s.t. z i ꞏ z i k k n z i ꞏ z i -1 ꞏ r i (mod m) i=1 ex: r 1 =1, r 2 =2, r 3 =3 1 2 3 m 1 =3, m 2 =5, m 3 =7 m = 3 ꞏ 5 ꞏ 7 1
Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n r 1 (mod m 1 ) gcd(m i , m j ) = 1 solution: r (mod m ) r 2 (mod m 2 ) m = m 1 m 2 ꞏ ꞏ ꞏ m k • • • r k (mod m k ) z i = m / m i -1 1 (mod m i ) (since gcd(z i , m i ) = 1) * z i -1 Z mi s.t. z i ꞏ z i k k n z i ꞏ z i -1 ꞏ r i (mod m) i=1 ex: r 1 =1, r 2 =2, r 3 =3 1 2 3 m 1 =3, m 2 =5, m 3 =7 m = 3 ꞏ 5 ꞏ 7 z 1 =35, z 2 =21, z 3 =15 1
Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n r 1 (mod m 1 ) gcd(m i , m j ) = 1 solution: r (mod m ) r 2 (mod m 2 ) m = m 1 m 2 ꞏ ꞏ ꞏ m k • • • r k (mod m k ) z i = m / m i -1 1 (mod m i ) (since gcd(z i , m i ) = 1) * z i -1 Z mi s.t. z i ꞏ z i k k n z i ꞏ z i -1 ꞏ r i (mod m) i=1 ex: r 1 =1, r 2 =2, r 3 =3 1 2 3 m 1 =3, m 2 =5, m 3 =7 m = 3 ꞏ 5 ꞏ 7 z 1 =35, z 2 =21, z 3 =15 35 ꞏ 2 + 3 (-23) = 1 35 2 + 3 ( 23) 1 z -1 =2 z -1 =1 z -1 =1 z 1 2, z 2 1, z 3 1 1
Chinese Remainder Theorem (CRT) Chinese Remainder Theorem (CRT) n r 1 (mod m 1 ) gcd(m i , m j ) = 1 solution: r (mod m ) r 2 (mod m 2 ) m = m 1 m 2 ꞏ ꞏ ꞏ m k • • • r k (mod m k ) z i = m / m i -1 1 (mod m i ) (since gcd(z i , m i ) = 1) * z i -1 Z mi s.t. z i ꞏ z i k k n z i ꞏ z i -1 ꞏ r i (mod m) i=1 ex: r 1 =1, r 2 =2, r 3 =3 1 2 3 m 1 =3, m 2 =5, m 3 =7 m = 3 ꞏ 5 ꞏ 7 z 1 =35, z 2 =21, z 3 =15 z -1 =2 z -1 =1 z -1 =1 z 1 2, z 2 1, z 3 1 n 35ꞏ2ꞏ1 + 21ꞏ1ꞏ2 + 15ꞏ1ꞏ3 157 52 (mod 105) 1
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 (mod m 2 ) 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 (mod m 2 ) (mod m 1 ) 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 n r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 n r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 n r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) Verification 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 n r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = 1 Verification 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 n r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = 1 Verification n mod m 2 = 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 mod m 1 n r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = r 1 1 1 Verification 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 n r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = r 1 0 1 1 Verification + 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 mod m 2 n r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = r 1 0 1 1 Verification + n mod m 2 = r 2 2
CRT, gcd(m 1 , m 2 )=1 , g ( 1 , 2 ) n r 1 (mod m 1 ) n r 1 (mod m 1 ) gcd(m 1 , m 2 ) 1 gcd(m 1 , m 2 ) = 1 r 2 (mod m 2 ) s, t such that m 1 s + m 2 t = 1 -1 + m 2 m 2 -1 = 1 i.e. m 1 m 1 1 1 2 2 n r 1 (m 2 m 2 -1 ) + r 2 (m 1 m 1 -1 ) (mod m 1 m 2 ) n mod m 1 = r 1 0 1 1 Verification + n mod m 2 = 0 r 2 2
Manually Incremental Calculation Manually Incremental Calculation n 1 (mod 3) 2 (mod 5) 3 (mod 7) 3 (mod 7) 21
Manually Incremental Calculation Manually Incremental Calculation n 1 (mod 3) 2 (mod 5) 3 (mod 7) 3 (mod 7) satisfying the 1 st eq ^ n 1 1 (mod 3) n 1 1 (mod 3) … satisfying the 1 eq. r 1 22
Manually Incremental Calculation Manually Incremental Calculation n 1 (mod 3) n 1 (mod 3) 2 (mod 5) 2 (mod 5) 3 (mod 7) 3 (mod 7) satisfying the 1 st eq ^ n 1 1 (mod 3) n 1 1 (mod 3) … satisfying the 1 eq. 23
Manually Incremental Calculation Manually Incremental Calculation n 1 (mod 3) n 1 (mod 3) 2 (mod 5) 2 (mod 5) 3 (mod 7) 3 (mod 7) satisfying the 1 st eq ^ n 1 1 (mod 3) n 1 1 (mod 3) … satisfying the 1 eq. 3 ꞏ (-3) + 5 ꞏ 2 = 1 24
Manually Incremental Calculation Manually Incremental Calculation n 1 (mod 3) n 1 (mod 3) 2 (mod 5) 2 (mod 5) 3 (mod 7) 3 (mod 7) satisfying the 1 st eq ^ n 1 1 (mod 3) n 1 1 (mod 3) … satisfying the 1 eq. inverse of 3 (mod 5) 3 ꞏ (-3) + 5 ꞏ 2 = 1 25
Manually Incremental Calculation Manually Incremental Calculation n 1 (mod 3) n 1 (mod 3) 2 (mod 5) 2 (mod 5) 3 (mod 7) 3 (mod 7) satisfying the 1 st eq ^ n 1 1 (mod 3) n 1 1 (mod 3) … satisfying the 1 eq. inverse of 3 (mod 5) 3 ꞏ (-3) + 5 ꞏ 2 = 1 inverse of 5 (mod 3) 26
Manually Incremental Calculation Manually Incremental Calculation n 1 (mod 3) n 1 (mod 3) 2 (mod 5) 2 (mod 5) 3 (mod 7) 3 (mod 7) satisfying the 1 st eq ^ n 1 1 (mod 3) n 1 1 (mod 3) … satisfying the 1 eq. inverse of 3 (mod 5) 3 ꞏ (-3) + 5 ꞏ 2 = 1 inverse of 5 (mod 3) ^ n 2 2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2 ^ n 1 27
Manually Incremental Calculation Manually Incremental Calculation n 1 (mod 3) n 1 (mod 3) 2 (mod 5) 2 (mod 5) 3 (mod 7) 3 (mod 7) satisfying the 1 st eq ^ n 1 1 (mod 3) n 1 1 (mod 3) … satisfying the 1 eq. inverse of 3 (mod 5) 3 ꞏ (-3) + 5 ꞏ 2 = 1 inverse of 5 (mod 3) ^ n 2 2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2 ^ r 2 n 1 28
Recommend
More recommend