cheat sheets for hard problems some problems tend to be
play

Cheat Sheets for Hard Problems Some problems tend to be harder than - PowerPoint PPT Presentation

Cheat Sheets for Hard Problems Some problems tend to be harder than others. NP NP P NP P NP-complete NP P X solveTSP{ blah blah blah blah blah } X TSP solveTSP{ blah blah blah blah blah } solveTSP{ blah blah X


  1. Cheat ¡Sheets ¡for ¡Hard ¡Problems

  2. Some problems tend to be harder than others.

  3. NP

  4. NP P

  5. NP P NP-complete

  6. NP P

  7. X solveTSP{ blah blah blah blah blah }

  8. X TSP solveTSP{ blah blah blah blah blah }

  9. solveTSP{ blah blah X TSP blah blah blah }

  10. Independent Set

  11. Independent Set Clique

  12. Independent Set Clique Clique Independent Set

  13. Clique Independent Set

  14. Clique Independent Set

  15. SolveIndSet { Return Clique( ); } G Clique Independent Set

  16. solveTSP{ blah blah X TSP blah blah blah }

  17. Did you say NP-complete?

  18. Did you say NP-complete?

  19. Travelling Salesman Satisfiability Integer Linear Programming Minimum Vertex Cover

  20. Minimum Multi-way cut ....

  21. Heuristics

  22. Heuristics

  23. Formal analysis?

  24. You have Polynomial Time.

  25. You have Polynomial Time. WORK BACKWARDS!

  26. Approximation & Randomized Algorithms

  27. A no-compromise situation?

  28. A no-compromise situation?

  29. A no-compromise situation? Exploit additional structure in the input.

  30. Parameterized & Exact Analysis

  31. Parameterized & Exact Analysis Chromatic ¡Number ¡is ¡easy ¡on ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡Graphs. Interval

  32. Parameterized & Exact Analysis Chromatic ¡Number ¡is ¡easy ¡on ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡Graphs. Planar*

  33. Parameterized & Exact Analysis Chromatic ¡Number ¡is ¡easy ¡on ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡Graphs. Bipartite

  34. Good solutions tend to involve a combination of several techniques.

  35. Vertex Cover

  36. Every edge has at least one end point in a vertex cover. Vertex Cover

  37. Every edge has at least one end point in a vertex cover. Vertex Cover

  38. Is there a Vertex Cover with at most k vertices?

  39. A vertex with more than k neighbors.

  40. Throw away all vertices with degree (k+1) or more. (And decrease the budget appropriately.)

  41. Throw away all vertices with degree (k+1) or more. (And decrease the budget appropriately.) After all the high-degree vertices are gone...

  42. ...any vertex can cover at most k edges.

  43. ...any vertex can cover at most k edges. Suppose the current budget is (k-x).

  44. ...any vertex can cover at most k edges. Suppose the current budget is (k-x). If the number of edges in the graph exceeds k(k-x)...?

  45. Lots of edges - no small vertex cover possible. Few edges - brute force becomes feasible.

  46. Lots of edges - no small vertex cover possible. win/ win situation Few edges - brute force becomes feasible.

  47. Common Sense

  48. Common Sense Approximate

  49. Common Sense Approximate Randomize

  50. Common Sense Approximate Randomize Exploit Input Structure

  51. Common Sense Approximate Randomize Exploit Input Structure

  52. Slides and Other Resources http://neeldhara.com/summer2013

Recommend


More recommend