chaotic streamlines inside droplet
play

Chaotic Streamlines Inside Droplet Radoslav Bozinoski System - PowerPoint PPT Presentation

Chaotic Streamlines Inside Droplet Radoslav Bozinoski System Neutrally Buoyant External Flow Vorticity Rate of Strain Tensor Linear Internal Flow Nonlinear Chaotic Streamlines Flow field Coordinate


  1. Chaotic Streamlines Inside Droplet Radoslav Bozinoski

  2. System • Neutrally Buoyant – External Flow • Vorticity • Rate of Strain Tensor • Linear – Internal Flow • Nonlinear • Chaotic Streamlines

  3. Flow field • Coordinate system moving with center-of- mass. • Inter-boundary tension is sufficiently large to maintain a spherical drop shape. • Far from the drop the fluid is assumed to undergo a steady linear motion

  4. Governing Equations ∞  x = U  1 2 w × x  E ⋅ x u u  x = 1 2 − 3  E ⋅ x − 2 x x ⋅ E ⋅ x ] 1 2 [ 5r 2 w × x E =  − 1  1 / 1  a  0 0 E 22 a = 0 a / 1  a  0 E 11 0 0

  5. Simplifications x  y , y  x ,a  1 a 0 ≤ a ≤ 1 w = w x ,w y ,w z − w y , − w x , − w z  x − x ,w y − w y ,w z − w z w z ≥ 0 z − z , w x − w x , w y − w y w y ≥ 0

  6. Parameters of interest • a = 1 - Axisymmetric • ω = (ωx,0,ωz) – ω = 0 – ω - inline with z-axis – ω - oriented off z-axis

  7. ω = 0 a = 1.0 w = (0,0,0 ) LCE = (0,0,-) Dot - Saddle fixed points Asterisks – Elliptic fixed points ψ = 0 -Nested family of tori

  8. ω - inline with z-axis • ψ exists  t = t  0

  9. ω – oriented off z-axis • Chaotic Streamlines –Fixed orientation (36º) –Fixed ω magnitude • a = 1.0 • ω = 0.1 • ω = ( wx,0,wz) • ω = 2.0

  10. Theta = 36º

  11. ω = 0.1

  12. ω = 2.0

Recommend


More recommend