large eddy simulation of soot formation in oxy coal
play

Large Eddy Simulation of Soot Formation in Oxy-Coal Combustion - PowerPoint PPT Presentation

Large Eddy Simulation of Soot Formation in Oxy-Coal Combustion David O. Lignell, Alex J. Josephson, Benjamin Isaac, Kamron Brinkerhoff Brigham Young University, University of Utah AIChE Annual Meeting Salt Lake City Utah November 1, 2017


  1. Large Eddy Simulation of Soot Formation in Oxy-Coal Combustion David O. Lignell, Alex J. Josephson, Benjamin Isaac, Kamron Brinkerhoff Brigham Young University, University of Utah AIChE Annual Meeting Salt Lake City Utah November 1, 2017

  2. Acknowledgements • This material is based upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number(s) DE- NA0002375 • Support is acknowledged from the University of Utah, and Brigham Young University

  3. Oxy-Coal Combustion • Coal remains an important source of power generation in the world. • Increased concern over CO 2 has led to development of various carbon capture methods. • Oxy-fuel was developed to allow affordable and simpler carbon capture. • In order develop oxy-coal systems more quickly, computer simulations have rapidly increased in accuracy and capabilities

  4. Oxy-Fuel Combustor (OFC) • Lab-scale combustor • University of Utah • 100 kW • Down fired • Refractory-lined • 3 inch, k=0.15 W/m*K • No swirl

  5. � OFC • Diameter = 0.6 m • Simulation length = 1.7 m • 100 kW capacity • Streams • Primary • Secondary • Purge • D p =1.6 cm, D s =3.5 cm �

  6. � OFC • Diameter = 0.6 m • Simulation length = 1.7 m • 100 kW capacity • Streams • Primary • Secondary • Purge • D p =1.6 cm, D s =3.5 cm �

  7. OFC SUFCO SKYLINE Coal Properties Bituminous Coal Bitumionous Coal • Primary Stream Properties � • Coal: 3.81 kg/hr • Coal: 4.47 kg/hr • CO 2 : 5.40 kg/hr • CO 2 : 7.48 kg/hr • O 2 : 1.04 kg/hr • O 2 : 1.22 kg/hr • T=300 K • T=366 K • Secondary • O 2 : 7.48 kg/hr • O 2 : 10.23 kg/hr • T = 489 K • T = 529 K • Purge • CO 2 : 3.08 kg/hr (total) • CO 2 : 3.85 kg/hr (total) • T=300 K • T=294 K • 3 radiometer inlets • 3 radiometer inlets �

  8. Simulation Parameters • # grid cells = 9,562,500 • Δ x = Δ y = Δ z = 4 mm • L x = 1.7 m (down), • L y = L z = 0.6 m • Runtime ~10 seconds. • # processors: 1000-2000

  9. Simulation: Models Radiation • Discrete Ordinates • S 8 model (80 rays) Gas Combustion • Coal scattering Particle Combustion • Gray gases Soot formation • Boundaries • matching radiative and wall conductive heat fluxes w ) = k T w − T o ✏ ( q i − � T 4 ∆ x w

  10. Simulation: Models Radiation • Transporting 2 mixture fraction variables Gas Combustion • ξ , η Particle Combustion • for mass fractions of Soot formation primary gas and coal-off- gas. • Lookup table • Equilibrium • Tabulated in terms of ξ , η , heat loss

  11. Simulation: Models • Coal Devolatilization Radiation • Yamamoto et al. PCI 32 Gas Combustion (2011) Particle Combustion • Parameters tuned using CPD Soot formation • Char Oxidation • Murphy & Shaddix model C&F 144 (2006) • Radiation • Discrete Ordinates • S 8 model (80 rays) • Coal scattering, Grey Gases

  12. Simulation: Models • Particle Transport Radiation • Pedel et al. C&F160 (2013) Gas Combustion • DQMOM Particle Combustion • 3 quadrature nodes Soot formation • 7 internal coordinates • Raw coal mass • Char mass • Particle enthalpy • 3 velocity components • Transport equations for node weights and weighted abscissas.

  13. Simulation: Models • Semi-empirical model Radiation • Brown and Fletcher Gas Combustion • Energy and Fuels, 12, Particle Combustion 745-757, 1998 Soot formation • Soot formation in coal systems from tar formation • M tar ~350 g/mol

  14. Simulation: Models Radiation Gas Combustion Particle Combustion Soot formation Gasification/Oxidation

  15. Simulation: Models • Transport tar and two soot Radiation moments Gas Combustion Particle Combustion Tar mass Soot formation ρ ˜ ∂ ¯ Y T ρ ^ v ˜ + r · (¯ ρ ˜ Y T ) + r · (¯ v 00 Y 00 T ) = S Y T ∂ t S Ytar = form tar - form soot - gasif tar - oxid tar Soot mass ρ ˜ ∂ ¯ Y s ρ ^ v ˜ + r · (¯ ρ ˜ Y s ) + r · (¯ s ) = S Y s v 00 Y 00 ∂ t S Ys = form soot - oxid soot - gasif soot Number density ρ ˜ ∂ ¯ N s ρ ^ v ˜ + r · (¯ ρ ˜ N s ) + r · (¯ s ) = S N s v 00 N 00 ∂ t S Ns = nucleation - aggregation

  16. Simulation: Models Radiation Soot Oxidation Gas Combustion Lee oxidation model Particle Combustion Soot formation ✓ − E O 2 ◆ oxid soot = SA soot ∗ P O 2 · A O 2 · exp T 1 / 2 R gas T

  17. Simulation: Models Radiation Soot Oxidation Gas Combustion Lee oxidation model Particle Combustion Soot formation ✓ − E O 2 ◆ oxid soot = SA soot ∗ P O 2 · A O 2 · exp T 1 / 2 R gas T • Data limited to temperature range that Lee took his measurements • Assumes that oxidation happens by O 2 molecule only • Experiments only took into account input

  18. Global Jet Structure—Vorticity

  19. Global Jet Structure—Vorticity

  20. Sufco Results Temperature Y O2 0.8 2600 0.4 1450 300 0

  21. Gasification of Soot fv soot • High soot concentration 6 • Soot is dispersed throughout the domain • This was not observed in the experiments 3 • Neglecting soot gasification • Not a good assumption for oxy-fired conditions with high CO 2 concentrations. 0

  22. Gasification of Soot fv soot • Preliminary soot gasification model added. 6 S gasif = ρ s X CO 2 k gs exp( − E gs /RT ) 3 • Qin K., Characterization of Residual Particulates from Biomass Entrained Flow Gasification , Energy and Fuels 27:263-270 0 (2013)

  23. Gasification of Soot fv soot Without Gasification • Preliminary soot gasification model added. 6 S gasif = ρ s X CO 2 k gs exp( − E gs /RT ) 3 • Qin K., Characterization of Residual Particulates from Biomass Entrained Flow Gasification , Energy and Fuels 27:263-270 (2013) 0

  24. Gasification of Soot Y O2 Y CO2 fv soot Without Gasification 6 1.0 3 0.5 0 0

  25. Soot Gasification and Oxidation Rates • A detailed Bayesian anaylsis was used to find optimal soot gasification and oxidation rates. • Oxidation - O 2 , OH - 13 studies included - Premixed, nonpremixed, TGA - Parameters: A O2 , E O2 , A OH ✓  − E O 2 � ◆ 1 r ox = A O 2 P O 2 exp + A OH P OH T 0 . 5 RT A.J. Josephson et al., Energy and Fuels 31: 11291-11303 (2017)

  26. Soot Gasification and Oxidation Rates • A detailed Bayesian anaylsis was used to find optimal soot gasification and oxidation rates. • Gasification - CO 2 , H 2 O - 8 studies included - Parameters: A CO2 , E CO2 , A H2O , n, E H2O ✓ − E CO 2 ◆ r CO 2 = A CO 2 P 0 . 5 CO 2 T 2 exp RT r H 2 O = A H 2 O P n ✓ − E H 2 O ◆ H 2 O exp T 1 / 2 RT A.J. Josephson et al., Energy and Fuels 31: 11291-11303 (2017)

  27. Oxidation Rates ✓  − E O 2 � ◆ 1 10 0 r ox = A O 2 P O 2 exp + A OH P OH Fenimore T 0 . 5 RT Neoh Ghiassi 10 -2 Kim Calculated Rates (kg/m 2 *s) Garo Marginal Posterior Puri Xu 0.6 10 -4 Lee 0.4 Chan Higgins 0.2 Kalogirou 0 10 -6 Sharma 1e-2 1e-1 1e0 1e2 1e-2 A O 2 × 10 -4 Marginal Posterior 10 -8 2.0e5 1 2 E O 0.5 1.7e5 10 -10 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 1.5e5 0 1e-2 1e-1 1e0 1e2 1e-2 1.5e5 1.7e5 2.0e5 Measured Rates (kg/m 2 *s) A O E O 2 2 Marginal Posterior 5e-3 5e-3 1500 1000 A OH A OH 2e-3 2e-3 500 1e-3 1e-3 0 1e-2 1e-1 1e0 1e2 1e-2 1.5e5 1.7e5 2.0e5 1e-3 2e-3 5e-3 A O E O A OH 2 2 A.J. Josephson et al., Energy and Fuels 31: 11291-11303 (2017)

  28. Oxidation Rates 10 0 ✓  − E O 2 � ◆ 1 Fenimore r ox = A O 2 P O 2 exp + A OH P OH T 0 . 5 RT Neoh Ghiassi 10 -2 Kim Calculated Rates (kg/m 2 *s) Garo Marginal Posterior Puri Xu 0.6 10 -4 Lee 0.4 Chan Higgins 0.2 Kalogirou 0 10 -6 Sharma 1e-2 1e-1 1e0 1e2 1e-2 A O 2 × 10 -4 Marginal Posterior 10 -8 2.0e5 1 2 E O 0.5 1.7e5 10 -10 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 1.5e5 0 1e-2 1e-1 1e0 1e2 1e-2 1.5e5 1.7e5 2.0e5 Measured Rates (kg/m 2 *s) A O E O 2 2 Marginal Posterior 5e-3 5e-3 1500 1000 A OH A OH 2e-3 2e-3 500 1e-3 1e-3 0 1e-2 1e-1 1e0 1e2 1e-2 1.5e5 1.7e5 2.0e5 1e-3 2e-3 5e-3 A O E O A OH 2 2 A.J. Josephson et al., Energy and Fuels 31: 11291-11303 (2017)

  29. H 2 O Gasification r H 2 O = A H 2 O P n ✓ − E H 2 O ◆ 10 0 H 2 O exp T 1 / 2 RT Calculated Rates (kg/m 2 *s) 10 -5 × 10 -6 Marginal Posterior 4 2 0 10 -10 1e2 1e4 1e5 1e7 Arnal A H 2 O Chhiti × 10 -5 Marginal Posterior 3.5e5 Neoh 4 Otto 2 O 3e5 Xu E H 2 10 -15 10 -15 10 -10 10 -5 10 0 2.5e5 0 1e2 1e4 1e5 1e7 2.5e5 3e5 3.5e5 Measured Rates (kg/m 2 *s) A H E H 2 O 2 O Marginal Posterior 6 0.5 0.5 4 n n 0.25 0.25 2 0 0 0 1e2 1e4 1e5 1e7 1e5 4e5 7e5 0 0.25 0.5 A H E H n 2 O 2 O A.J. Josephson et al., Energy and Fuels 31: 11291-11303 (2017)

  30. H 2 O Gasification r H 2 O = A H 2 O P n ✓ − E H 2 O ◆ 10 0 H 2 O exp T 1 / 2 RT Calculated Rates (kg/m 2 *s) 10 -5 × 10 -6 Marginal Posterior 4 2 0 10 -10 1e2 1e4 1e5 1e7 Arnal A H 2 O Chhiti × 10 -5 Marginal Posterior 3.5e5 Neoh 4 Otto 2 O 3e5 Xu E H 2 10 -15 10 -15 10 -10 10 -5 10 0 2.5e5 0 1e2 1e4 1e5 1e7 2.5e5 3e5 3.5e5 Measured Rates (kg/m 2 *s) A H E H 2 O 2 O Marginal Posterior 6 0.5 0.5 4 n n 0.25 0.25 2 0 0 0 1e2 1e4 1e5 1e7 1e5 4e5 7e5 0 0.25 0.5 A H E H n 2 O 2 O A.J. Josephson et al., Energy and Fuels 31: 11291-11303 (2017)

Recommend


More recommend