can we store the whole world s data in dna
play

Can We Store the Whole Worlds Data in DNA Storage? HotStorage20 - PowerPoint PPT Presentation

Can We Store the Whole Worlds Data in DNA Storage? HotStorage20 Bingzhe Li , Nae Young Song, Li Ou, and David H.C. Du University of Minnesota, Twin Cities C enter for R esearch in I ntelligent S torage Outlines Motivation DNA


  1. Can We Store the Whole World’s Data in DNA Storage? HotStorage’20 Bingzhe Li , Nae Young Song, Li Ou, and David H.C. Du University of Minnesota, Twin Cities C enter for R esearch in I ntelligent S torage

  2. Outlines • Motivation • DNA background • Contributions – Trade-offs in DNA storage – DNA storage modeling – How many tubes to store the whole world’s data? • Indexing scheme • Conclusion C enter for R esearch in 2 I ntelligent S torage

  3. Big Data Era Data is doubled almost every 2 years 44 Zettabytes in 2020 175 Zettabytes in 2025 Image from: https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf C enter for R esearch in 3 I ntelligent S torage

  4. How to Store these Data? 50 trillion DVD movies DVD DVD DVD DVD DVD . . . 44 ZB More than 1 billion drives with the size of 16TB [1] . . . 5 years or 10 years warranty [1] https://www.seagate.com/enterprise-storage/ C enter for R esearch in 4 I ntelligent S torage

  5. How to Store these Data? 50 trillion DVD movies DVD DVD DVD DVD DVD . . . Looking for an emerging storage device: • Keeps data longer 44 ZB • Has higher areal density More than 1 billion drives with the size of 16TB [1] . . . [1] https://www.seagate.com/enterprise-storage/ C enter for R esearch in 5 I ntelligent S torage

  6. DNA Storage • High spatial density • A theoretical density of 455 EB/g [1] • Long persistency • Several centuries [2][3] [1] Raja Appuswamy, Kevin Le Brigand, Pascal Barbry, Marc Antonini, Olivier Madderson, Paul Freemont, James McDonald, and Thomas Heinis. Oligoarchive: Using dna in the dbms storage hierarchy. In CIDR, 2019. [2] Morten E Allentoft, Matthew Collins, David Harker, James Haile, Charlotte L Oskam, Marie L Hale, Paula F Campos, Jose A Samaniego, M Thomas P Gilbert, Eske Willerslev, et al. The half-life of dna in bone: measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society B: Biological Sciences, 279(1748):4724 – 4733, 2012. [3] Robert N Grass, Reinhard Heckel, Michela Puddu, Daniela Paunescu, and Wendelin J Stark. Robust chemical preservation of digital information on dna in silica with error-correcting codes. Angewandte Chemie International Edition, 54(8):2552 – 2555, 2015. C enter for R esearch in 6 I ntelligent S torage

  7. Background of DNA storage • Nucleotides : molecules form the building blocks of DNA. • Adenine (A) → Thymine (T) • Cytosine (C) → Guanine (G) Figure 1 Figure 1 from https://www.genome.gov/Pages/Education/Modules/BasicsPresentation.pdf C enter for R esearch in 7 I ntelligent S torage

  8. Existing Work Organick et al. [8] ~150GB Size per DNA Storage Tube 10GB Appuswamy et al. [7] Organick et al. [6] 100MB Blawat et al. [4] Erlich et al. [5] 1MB Church et al. [2] Goldman et al. [3] 10KB 100B Clelland et al. [1] Year 2017 2018 2019 2016 2020 1999 2012 2013 [1] Clelland, C. T., Risca, V. & Bancroft, C. Hiding messages in DNA microdots. Nature 399, 533 – 534 (1999). [2] Church, G. M., Gao, Y. & Kosuri, S. Next- generation digital information storage in DNA. Science 337 , 1628 – 1628 (2012) [3] Goldman, N. et al. Towards practical, high- capacity,low- maintenance information storage in synthesized DNA. Nature 494, 77 – 80 (2013). [4] Blawat, M. et al. Forward error correction for DNA data storage. Procedia Comput. Sci. 80, 1011 – 1022 (2016) [5] Erlich, Y. & Zielinski, D. DNA Fountain enables a robust and efficient storage architecture. Science 355, 950 – 954 (2017). [6] Organick, L. et al. Random access in large- scale DNA data storage. Nat. Biotechnol. 36, 242 – 248 (2018). [7] Appuswamy, Raja, et al. "OligoArchive: Using DNA in the DBMS storage hierarchy." CIDR. 2019. [8] Organick, Lee, et al. "Probing the physical limits of reliable DNA data retrieval." Nature communications 11.1 (2020): 1-7. C enter for R esearch in 8 I ntelligent S torage

  9. Existing Work Organick et al. [8] ~150GB Size per DNA Storage Tube 10GB Appuswamy et al. [7] Organick et al. [6] 100MB Blawat et al. [4] Erlich et al. [5] 1MB Church et al. [2] Feasibility, but no scalability! Goldman et al. [3] 10KB 100B Clelland et al. [1] Year 2017 2018 2019 2016 2020 1999 2012 2013 [1] Clelland, C. T., Risca, V. & Bancroft, C. Hiding messages in DNA microdots. Nature 399, 533 – 534 (1999). [2] Church, G. M., Gao, Y. & Kosuri, S. Next- generation digital information storage in DNA. Science 337 , 1628 – 1628 (2012) [3] Goldman, N. et al. Towards practical, high- capacity,low- maintenance information storage in synthesized DNA. Nature 494, 77 – 80 (2013). [4] Blawat, M. et al. Forward error correction for DNA data storage. Procedia Comput. Sci. 80, 1011 – 1022 (2016) [5] Erlich, Y. & Zielinski, D. DNA Fountain enables a robust and efficient storage architecture. Science 355, 950 – 954 (2017). [6] Organick, L. et al. Random access in large- scale DNA data storage. Nat. Biotechnol. 36, 242 – 248 (2018). [7] Appuswamy, Raja, et al. "OligoArchive: Using DNA in the DBMS storage hierarchy." CIDR. 2019. [8] Organick, Lee, et al. "Probing the physical limits of reliable DNA data retrieval." Nature communications 11.1 (2020): 1-7. C enter for R esearch in 9 I ntelligent S torage

  10. Our Contributions • Investigate the effect of different factors on the capacity of DNA storage (in- house simulator) • Analyze trade-offs between different factors and scalability of DNA storage • How to index the whole world’s data in DNA storage C enter for R esearch in 10 I ntelligent S torage

  11. Factors and Modeling of DNA Storage L • Primer : is used to read data out (sequencing DNA strand process based on Polymerase Chain One pair of primers Reaction (PCR)) Primer#1 Index #1 Payload 1 ECC 1 Primer#2 • Index : distinguishes DNA strands in the ... same primer pair • Payload : useful information Primer#1 Index #N Payload N ECC N Primer#2 • ECC : corrects errors from synthesis and sequencing processes 𝑚 𝑞𝑠𝑗𝑛𝑓𝑠 𝑚 𝑗𝑜𝑒𝑓𝑦 𝑚 𝑞𝑏𝑧𝑚𝑝𝑏𝑒 𝑚 𝐹𝐷𝐷 𝑚 𝑞𝑠𝑗𝑛𝑓𝑠 • PF (primer factor) : N DNA strands attached to the same primer pair L = 𝑚 𝑞𝑠𝑗𝑛𝑓𝑠 ∗ 2 + 𝑚 𝑗𝑜𝑒𝑓𝑦 + 𝑚 𝑞𝑏𝑧𝑚𝑝𝑏𝑒 + 𝑚 𝐹𝐷𝐷 • Coding density : useful information (bit) 𝐽𝑜𝑔𝑝 = 𝑑𝑝𝑒𝑗𝑜𝑕 𝑒𝑓𝑜𝑡𝑗𝑢𝑧 ∗ 𝑚 𝑞𝑏𝑧𝑚𝑝𝑏𝑒 ( 𝑚 𝑞𝑠𝑗𝑛𝑓𝑠 is about 18 – 25 bp) • Solubility • Droplet volume • ... C enter for R esearch in 11 I ntelligent S torage

  12. DNA Storage Trade-offs: varying DNA length (L) 𝑚 𝑗𝑜𝑒𝑓𝑦 𝑚 𝑞𝑏𝑧𝑚𝑝𝑏𝑒 𝑚 𝐹𝐷𝐷 ? L L = 100 – 3000 bp C enter for R esearch in 12 I ntelligent S torage

  13. DNA Storage Trade-offs: varying coding density 𝑚 𝑞𝑏𝑧𝑚𝑝𝑏𝑒 𝑚 𝑗𝑜𝑒𝑓𝑦 𝑚 𝐹𝐷𝐷 Coding density Coding = 0.29 - 2 C enter for R esearch in 13 I ntelligent S torage

  14. Store the Whole World’s Data based on Today’s Technology Factor Value 660 GB per tube Whole world’s data (ZB) 44 DNA Strand Length(bp) 300 Primer length (bp) 20 Coding density 1 Whole world’s data ECC 15% Tube size (mL) 1.7 Max DNA solubility in liquid (mg/mL) 500 ... Droplet size (mL) 0.001 PF 1.55*10E6 more than 10 11 C enter for R esearch in 14 I ntelligent S torage

  15. DNA Storage Indexing len Block-based storage device: Request OFFSET mod capacity tube External index: offset 1 Primer pair #1 #1 #2 #i ... ... len * # of entries * # of tube ~77 TB offset i Primer pair #i ... ... offset M Primer pair #M Object-based storage device: len External index: ID 1 Tube #1 Primer pair #1 Index start1 Index end1 Global ID/Key ... ... ... ... ... Request len * # of IDs ~7.17*10^5 TB ID i Tube #i Primer pair #j Index starti Index endi ... ... ... ... ... ID M Tube #N Primer pair #M Index startM Index endM #1 #2 #i #N Indexing for the object-based storage device is more challenging C enter for R esearch in 15 I ntelligent S torage

  16. Conclusion • Modeling of DNA storage based on different factors • Investigate the trade-offs between different factors • Scalability of DNA storage • Introduce simple schemes to index the whole world’s data in DNA storage C enter for R esearch in 16 I ntelligent S torage

  17. Thanks! lixx1743@umn.edu C enter for R esearch in 17 I ntelligent S torage

Recommend


More recommend