13-14 MAY- VIENNA, AUSTRIA C ASE S TUDIES: R EDUCTION OF T HERMAL C ONDUCTIVITY & I MPROVEMENT OF M ECHANICAL P ERFORMANCE OF P OLYMERIC F OAMS BY U SING N ANOSTRATEGIES Cristina Saiz-Arroyo 1 , Alberto López-Gil 2 , Josías Tirado 2 , Sergio Estravís 2 , Javier Escudero 2 , Miguel Angel Rodríguez-Pérez 2 1 CellMat Technologies SL, Valladolid-Spain 2 CellMat Laboratory-University of Valladolid, Valladolid- Spain Technology and Innovation for Cellular Materials at Industry Service
o C ELL M AT T ECHNOLOGIES o P OLYMER N ANOCOMPOSITE F OAMS o C ASE S TUDY # 1 : R IGID PU F OAMS WITH I MPROVED T HERMAL I NSULATING P ERFORMANCE o C ASE S TUDY # 2 : H IGH D ENSITY LDPE F OAMS WITH I MPROVED M ECHANICAL B EHAVIOUR o S UMMARY & C ONCLUSIONS
o C ELL M AT T ECHNOLOGIES o P OLYMER N ANOCOMPOSITE F OAMS o C ASE S TUDY # 1 : R IGID PU F OAMS WITH I MPROVED T HERMAL I NSULATING P ERFORMANCE o C ASE S TUDY # 2 : H IGH D ENSITY LDPE F OAMS WITH I MPROVED M ECHANICAL B EHAVIOUR o S UMMARY & C ONCLUSIONS
C ELL M AT T ECHNOLOGIES C ELLULAR M ATERIALS L ABORATORY Established in October 2012. U NIVERSITY OF V ALLADOLID- S PAIN Spin-off company of the University of Valladolid. Established in 1999. International recognized laboratory in the o Transferring knowledge and area of cellular materials. technology on cellular materials to industrial partners. SPECIFIC AND NOVEL KNOW-HOW AND o Advising to plastics producers in TECHNOLOGIES ON manufacturing better and cheaper ADVANCED CELLULAR materials using specific know-how. MATERIALS LICENSES ∼ ∼ 145 scientific papers ∼ ∼ o • Producing advanced foams and/or TRANSFER • 10 patents and several novel technologies formulations for foaming AGREEMENTS applications • 16 Ph D thesis • More than 55 research projects • Strong collaborations with companies around the world
C ELL M AT T ECHNOLOGIES W HAT D O W E O FFER? C ELL M AT P RODUCTS C ELL M AT T ECHNOLOGIES o STAGES MOULDING SOLID PLASTIC PARTS PRODUCERS o ANICELL o o OPENCELLMAT IMPLEMENTATION OF FOAMING PROCESSES o TECHNICAL CONSULTANCY IN HALOGEN FREE FLAME RETARDANCY o SPECIFIC TRAINING COURSES FOAM PRODUCERS o OPTIMIZATION OF CELLULAR MATERIALS: PROCESS & PRODUCT o SUBSTITUTION OF OIL-DERIVED PRODUCTS BY BIOPLASTICS o TECHNICAL CONSULTANCY IN HALOGEN FREE FLAME RETARDANCY o SPECIFIC TRAINING COURSES
o C ELL M AT T ECHNOLOGIES o P OLYMER N ANOCOMPOSITE F OAMS o C ASE S TUDY # 1 : R IGID PU F OAMS WITH I MPROVED T HERMAL I NSULATING P ERFORMANCE o C ASE S TUDY # 2 : H IGH D ENSITY LDPE F OAMS WITH I MPROVED M ECHANICAL B EHAVIOUR o S UMMARY & C ONCLUSIONS
P OLYMER N ANOCOMPOSITE F OAMS CLASSIC APPROACH: OBTENTION OF TAILORED POLYMERIC FOAMS WITH IMPROVED PROPERTIES FOR A CERTAIN APPLICATION • Temperature • Pressure • Time MACROSCOPIC MICROSCOPIC • Blowing Agent Amount LEVEL LEVEL • … PROCESSING CELLULAR PARAMETERS STRUCTURE PHYSICAL MARKET, PROPERTIES APPLICATION MORPHOLOGY MODIFICATIONS POLYMERIC POLYMERIC MATRIX MATRIX • Modification of polymer molecular architecture, (Crosslinking, Branching…) • Modification of chemical composition: NANOPARTICLES D. Klempner, V. Sendijarevic. Handbook of Polymeric Foams and Foam Technology. 2 nd Edition. (Hanser Publishers)
P OLYMER N ANOCOMPOSITE F OAMS WHY NANOPARTICLES? MULTIFUNCTIONAL ROLE OF NANOPARTICLES IN CELLULAR POLYMERS MACROSCOPIC LEVEL MICROSCOPIC LEVEL PROCESSING CELLULAR PARAMETERS STRUCTURE PHYSICAL MARKET, • Nucleating agents PROPERTIES APPLICATION • Improved rheology MODIFICATIONS • Improved barrier properties • Thermal POLYMERIC MATRIX MORPHOLOGY Mechanical • S YNERGISTIC POLYMERIC • Fire retardant E FFECTS MATRIX NANOPARTICLES • Modifications polymeric matrix IMPROVEMENTS IN THE SOLID POLYMERIC MATRIX, (Solid Nanocomposite in Cell Walls) • Thermal stability • Mechanical properties • Fire retardancy C. Saiz-Arroyo, M.A. Rodríguez-Pérez, J.I. Velasco, J.A. De Saja. Influence of foaming process on the structure-property relationship of LDPE/SIO 2 foamed nanocomposites. Composites Part B, Engineering 48:40-50, (2013))
o C ELL M AT T ECHNOLOGIES o P OLYMER N ANOCOMPOSITE F OAMS o C ASE S TUDY # # # # 1 : R IGID PU F OAMS WITH I MPROVED T HERMAL I NSULATING P ERFORMANCE o C ASE S TUDY # 2 : H IGH D ENSITY LDPE F OAMS WITH I MPROVED M ECHANICAL B EHAVIOUR o S UMMARY & C ONCLUSIONS
C ASE S TUDY # # # 1 : PUR F OAMS WITH R EDUCED λ # λ λ λ CASE STUDY # # 1: RIGID POLYURETHANE FOAMS/NANOCLAYS # # PUR FOAMS WITH IMPROVED FOAMING MECHANISMS INSULATION PROPERTIES MICROSCOPIC LEVEL MACROSCOPIC LEVEL PROCESSING CELLULAR PARAMETERS STRUCTURE PHYSICAL MARKET, • NUCLEATING EFFECT PROPERTIES APPLICATION MODIFICATIONS MORPHOLOGY • THERMAL CONDUCTIVITY POLYMERIC MATRIX POLYMERIC MATRIX Commercial polyurethane rigid • formulation blown with water • NANOCLAYS: 0.5, 1, 3 & 5 wt.%
C ASE S TUDY # # # # 1 : PUR F OAMS WITH R EDUCED λ λ λ λ NANOFILLER/POLYURETHANE REACTIVE FOAMING STEP 1: NANOFILLERS Dispersion / exfoliation NANOFILLERS ADDITION/DISPERSION (mechanical stirring) (Nanoclays) POLYOL ADDITIVES WATER STEP 2: FOAMING PROCESS Reactive foaming expansion ISOCYANATE Mechanical stirring to activate/promote the reaction
C ASE S TUDY # # # # 1 : PUR F OAMS WITH R EDUCED λ λ λ λ RESULTS: THERMAL CONDUCTIVITY 29 Therm al Conductivity ·K) 10 /m 28 ) 9 al Conductivity (% W 8 al Conductivity (m 7 27 6 5 Reduction Therm 4 26 3 Therm 2 25 1 0 0 1 2 3 4 5 24 Nanoclays Concentration (wt% ) 0 1 2 3 4 5 Nanoclays Concentration (wt% ) Effective reduction of λ λ λ λ due to the introduction of nanoclays. Optimum content- Minimum in λ λ λ - 1wt%- 8% Reduction λ
C ASE S TUDY # # # 1 : PUR F OAMS WITH R EDUCED λ # λ λ λ RESULTS: THERMAL CONDUCTIVITY Thermal Conductivity in Polymeric Foams 38 λ - 2 Days After Production 38 λ - 2 Days After Production λ - 40 Days After Production � � � � � � � � � � � � � 36 λ - 40 Days After Production ·K) Reduction λ - 2 Days After Production ·K) 10 36 /m Reduction λ - 40 Days After Production λ λ s : Conduction through solid phase /m 34 λ λ ) W 9 al Conductivity (% al Conductivity (m W 34 λ λ λ λ g : Conduction through gas phase 8 λ - Air: 25.3 mW/m·K al Conductivity (m 32 λ λ r : Thermal radiation λ λ 7 32 λ c : Convection within the cells, negligible φ λ λ λ φ φ < 4mm. φ 6 DIFFUSION OF BLOWING AGENT 30 5 λ - CO 2 : 14.5 mW/m·K � � � 16�� � 30 � � � � ��� � ��� Reduction Therm 4 28 3� 3 28 2 3 � � Therm � � � � � ���� � Therm 26 2 ���� � � ��� � , � � , !, ", � � , � # $ 3 26 1 24 0 24 I N W HICH M ECHANISM ARE N ANOCLAYS A CTING? 0 1 2 3 4 5 0 1 2 3 4 5 Nanoclays Concentration (wt% ) 0 1 2 3 4 5 Nanoclays Concentration (wt% ) Nanoclays Concentration (wt% ) Effective reduction of λ λ due to the introduction of nanoclays. λ λ Optimum content- Minimum in λ λ - 1wt%- 8% Reduction λ λ O. Almanza, M.A. Rodríguez-Pérez, J.A. de Saja. Prediction of the radiation term in the thermal conductivity of crosslinked closed cell polyolefin foams. Journal of Polymer Science Part B: Polymer Physics 38:993-1004, (2000). R.A. Campo-Arnaiz, M.A. Rodríguez-Pérez, B. Calvo, J.A. de Saja. Extinction coefficient of polyolefin foams. Journal of Polymer Science, Part B: Polymer Physics 43: 1608- 1617, (2005).
P OLYMER N ANOCOMPOSITE F OAMS PHYSICS IN POLYMER FOAMS: NANOPARTICLES COULD ACT IN MOST OF THE MECHANISMS TAKING PLACE DIFFUSION COARSENING DRAINAGE COALESCENCE SOLIDIFICATION NUCLEATION MELTING COALESCENCE CELL SIZE DENSITY EVENTS EVOLUTION DISTRIBUTION CELL DENSITY
C ASE S TUDY # # # 1 : PUR F OAMS WITH R EDUCED λ # λ λ λ ANALYSIS OF THE FOAMING PROCESS: X-RAY RADIOSCOPY SET UP Flat panel Microfocus detector X-Ray source Detector: Source: 2240x2344 5 µm Spot 12bits 20-100KV 9fps max 0-200µA 50 µ µ m µ µ %&'()�)*&+),( � -.. CONE BEAM -/. SEQUENCE OF RADIOGRAPHIES ADQUIRED ON REAL TIME
C ASE S TUDY # # # # 1 : PUR F OAMS WITH R EDUCED λ λ λ λ FOAMING PROCESS: NEAT PU VS PU + 3wt% NANOCLAYS NEAT PU PU + 3wt% NANOCLAYS Qualitative analysis: Cell size reduction due to the addition of nanoclays
C ASE S TUDY # # # # 1 : PUR F OAMS WITH R EDUCED λ λ λ λ NUCLEATING EFFECT OF NANOCLAYS: QUANTITATIVE ANALYSIS (X-RAY + IMAGE ANALYSIS) 40% C ELL S IZE R EDUCTION 100 90 neat PU neat PU 80 450 0.5% clays 0.5% clays 70 1% clays 60 1% clays 400 Relative density /% 3% clays 50 3% clays 350 5% clays µ m 5% clays 40 µ Cell size / µ µ 300 30 250 200 20 150 100 10 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 5 6 7 8 9 0 0 0 0 0 0 3 4 5 6 7 8 9 0 0 0 0 1 1 2 3 4 5 1 2 3 4 Tim e /s Tim e /s DENSITY EVOLUTION CELL SIZE EVOLUTION
Recommend
More recommend