branching processes in fluid mechanics an application to
play

Branching Processes in Fluid Mechanics: An application to the - PowerPoint PPT Presentation

Branching Processes in Fluid Mechanics: An application to the Navier-Stokes and LANS-alpha equations. Enrique Thomann Joint work with Larry Chen, Ron Guenther, Ed Waymire (Oregon State University) and Sun-Chul Kim (Chung Ang University)


  1. Branching Processes in Fluid Mechanics: An application to the Navier-Stokes and LANS-alpha equations. Enrique Thomann Joint work with Larry Chen, Ron Guenther, Ed Waymire (Oregon State University) and Sun-Chul Kim (Chung Ang University) Special Semester on Stochastics with Emphasis on Finance

  2. Outline of the talk • Navier Stokes and LANSalpha Regularization. What and why. • Review of current state of knowledge. A basic question. • Problem in Fourier domain. • Stochastic branching representation of solution. Two examples and the case of LANSalpha • Function Spaces. Iteration and contraction mapping. • Rates of convergence as alpha vanishes. Special Semester on Stochastics with Emphasis on Finance

  3. Incompressible Navier-Stokes equations in a periodic domain. Periodic domain D = [ − L, L ] 3 , L > 0 − ∂ v ∂ t + ∇ · ( v ⊗ v ) = ν ∆ v − ∇ p + g ∇ · v = 0 ∇ · Initial data v ( x , 0) = v 0 ( x ) . Computational challenges for small Reynolds number. Alternative LANSalpha equation introduces a filtering of high frequencies. Special Semester on Stochastics with Emphasis on Finance

  4. Naive Regularization (Leray ‘30) ∂ v ∂ t + ∇ · ( u ⊗ v ) = ν ∆ v − ∇ p + g ∇ · v = 0 Spatial filtering u = G ∗ v . Does not satisfy Kelvin Circulation Theorem d � � v · d r = ( ν ∆ v + g ) · d r dt γ t γ t Special Semester on Stochastics with Emphasis on Finance

  5. Naive Regularization (Leray ‘30) ∂ v ∂ t + ∇ · ( u ⊗ v ) = ν ∆ v − ∇ p + g ∇ · v = 0 Spatial filtering u = G ∗ v . Does not satisfy Kelvin Circulation Theorem d � � v · d r = ( ν ∆ v + g ) · d r dt γ t γ t Gallavotti challenge - Find a regularization of the Navier- Stokes Equations that satisfy the Kelvin Circulation Theorem. One such regularization is the LANSalpha equation introduced by Foias, Holmes and Titi (2002) Special Semester on Stochastics with Emphasis on Finance

  6. − ∇ · ⊗ ∂ v Navier-Stokes ∂ t + ∇ · ( v ⊗ v ) = ν ∆ v − ∇ p + g ∇ · v = 0 ∇ · v = 0 ∂ v ( α ) + ∇ · ( u ( α ) ⊗ v ( α ) ) + ( ∇ u ( α ) ) Tv ( α ) = ν ∆ v ( α ) − ∇ p + g ∂ t ∇ · v ( α ) = 0 , (1 − α 2 ∆ ) u ( α ) = v ( α ) LANS-alpha ∇ · − Initial data data v ( α ) ( x , 0) = v 0 ( x ) Special Semester on Stochastics with Emphasis on Finance

  7. − ∇ · ⊗ ∂ v Navier-Stokes ∂ t + ∇ · ( v ⊗ v ) = ν ∆ v − ∇ p + g ∇ · v = 0 ∇ · v = 0 ∂ v ( α ) + ∇ · ( u ( α ) ⊗ v ( α ) ) + ( ∇ u ( α ) ) Tv ( α ) = ν ∆ v ( α ) − ∇ p + g ∂ t ∇ · v ( α ) = 0 , (1 − α 2 ∆ ) u ( α ) = v ( α ) LANS-alpha ∇ · − Initial data data v ( α ) ( x , 0) = v 0 ( x ) Spatial Filtering given by the Green function of the Helmholtz operator u ( α ) = (1 − α 2 ∆ ) − 1 v ( α ) = G ∗ v ( α ) . Special Semester on Stochastics with Emphasis on Finance

  8. − ∇ · ⊗ ∂ v Navier-Stokes ∂ t + ∇ · ( v ⊗ v ) = ν ∆ v − ∇ p + g ∇ · v = 0 ∇ · v = 0 ∂ v ( α ) + ∇ · ( u ( α ) ⊗ v ( α ) ) + ( ∇ u ( α ) ) Tv ( α ) = ν ∆ v ( α ) − ∇ p + g ∂ t ∇ · v ( α ) = 0 , (1 − α 2 ∆ ) u ( α ) = v ( α ) LANS-alpha ∇ · − Initial data data v ( α ) ( x , 0) = v 0 ( x ) Spatial Filtering given by the Green function of the Helmholtz operator u ( α ) = (1 − α 2 ∆ ) − 1 v ( α ) = G ∗ v ( α ) . Recovering Navier-Stokes. α ( ∇ u (0) ) Tv (0) = 1 v (0) = u (0) , | 2 α = 0 , 2 ∇ | | v | Special Semester on Stochastics with Emphasis on Finance

  9. Current Theory - Brief survey • Foias, Holmes and Titi (2002), Existence, regularity and convergence of subsequences as alpha vanishes. • Marsden and Shkoller (2003) Introduced the Langrangian averaged Euler equations. • Linshiz and Titi (2006) MHD-alpha models. Rate of convergence as alpha vanishes ? Special Semester on Stochastics with Emphasis on Finance

  10. Probabilistic representation of solutions - An answer to the rate of convergence question for LANS-alpha. • LeJan-Sznitman (1997) Probabilistic representation of NS in Fourier Domain. • Bhattacharya et al (2003) Notion of Majorizing kernels. • Ramirez (2006) Numerical methods based on stochastic representations applied to Burgers equation. • Chen et al (2008) Rate of convergence. Special Semester on Stochastics with Emphasis on Finance

  11. An illustrative example. Forced Heat equation. ∂ u ∂ ˆ u ∂ t = − | k | 2 ˆ ∂ t = ∆ u + g, u | t =0 = u 0 u + ˆ u | t =0 = ˆ ˆ g, , u 0 � t u 0 ( k ) e − | k | 2 t + 0 e − | k | 2 s ˆ u ( k, t ) = ˆ ˆ g ( k, t − s ) ds Special Semester on Stochastics with Emphasis on Finance

  12. An illustrative example. Forced Heat equation. ∂ u ∂ ˆ u ∂ t = − | k | 2 ˆ ∂ t = ∆ u + g, u | t =0 = u 0 u + ˆ u | t =0 = ˆ ˆ g, , u 0 � t u 0 ( k ) e − | k | 2 t + 0 e − | k | 2 s ˆ u ( k, t ) = ˆ ˆ g ( k, t − s ) ds Exponential random variable P ( S > t ) = e − | k | 2 t � t | k | 2 e − | k | 2 s ˆ g ( k , t − s ) u 0 ( k ) e − | k | 2 t + u ( k , t ) = ˆ ˆ ds | k | 2 0 Special Semester on Stochastics with Emphasis on Finance

  13. An illustrative example. Forced Heat equation. ∂ u ∂ ˆ u ∂ t = − | k | 2 ˆ ∂ t = ∆ u + g, u | t =0 = u 0 u + ˆ u | t =0 = ˆ ˆ g, , u 0 � t u 0 ( k ) e − | k | 2 t + 0 e − | k | 2 s ˆ u ( k, t ) = ˆ ˆ g ( k, t − s ) ds Exponential random variable P ( S > t ) = e − | k | 2 t � t | k | 2 e − | k | 2 s ˆ g ( k , t − s ) u 0 ( k ) e − | k | 2 t + u ( k , t ) = ˆ ˆ ds | k | 2 0  u 0 ( k ) ˆ if S > t  u ( k , t ) = E [ X ( k , t )] ˆ X ( k, t ) = g ( k,t − S ) ˆ if S ≤ t. | k | 2  Special Semester on Stochastics with Emphasis on Finance

  14. Probabilistic representation for LANS-alpha − ∂ v ( α ) + ∇ · ( u ( α ) ⊗ v ( α ) ) + ( ∇ u ( α ) ) Tv ( α ) ν ∆ v ( α ) − ∇ p + g = ∂ t ∇ · v ( α ) = 0 , (1 − α 2 ∆ ) u ( α ) v ( α ) = ( ) k · ˆ v (k , t ) = 0 Incompressibility π k � ∇ p = 0 Leray Projection Aspect Ratio time, β = 2 π /L . ˆ v (k , t ) u (k , t ) = ˆ 1 + α 2 | β k | 2 Take Fourier Transform, integrate in time and eliminate the pressure using the projection Special Semester on Stochastics with Emphasis on Finance

  15. Mild Formulation exp[ − ν | β k | 2 t ]ˆ ˆ v (k , t ) = v 0 (k) � t β k · ˆ v (j , t − s ) � exp[ − ν | β k | 2 s ] 1 + α 2 | β j | 2 π k (ˆ v (k − j , t − s )) ds − i 0 j � t βπ k (j)ˆ v (j , t − s ) · ˆ v (k − j , t − s ) � exp[ − ν | β k | 2 s ] − i ds 1 + α 2 | β j | 2 0 j � t exp[ − ν | β k | 2 s ]ˆ + g (k , t − s ) ds 0 First and last term can be interpreted using an exponential random variable. To provide a probabilistic representation to the quadratic terms, use a branching process with the aid of Majorizing kernels. Special Semester on Stochastics with Emphasis on Finance

  16. Dealing with the quadratic terms - a particular term � t β k · ˆ v (j , t − s ) � exp[ − ν | β k | 2 s ] ( − i ) 1 + α 2 | β j | 2 π k (ˆ v (k − j , t − s )) ds 0 j � t | β k | 1 � ν | β k | 2 exp[ − ν | β k | 2 s ] = (1 + α 2 | β j | 2 ) ν | β k | 2 0 j ( − i ) [e k · ˆ v (j , t − s )] π k (ˆ v (k − j , t − s )) ds � t � Special Semester on Stochastics with Emphasis on Finance

  17. Dealing with the quadratic terms - a particular term � t β k · ˆ v (j , t − s ) � exp[ − ν | β k | 2 s ] ( − i ) 1 + α 2 | β j | 2 π k (ˆ v (k − j , t − s )) ds 0 j � t | β k | 1 � ν | β k | 2 exp[ − ν | β k | 2 s ] = (1 + α 2 | β j | 2 ) ν | β k | 2 0 j ( − i ) [e k · ˆ v (j , t − s )] π k (ˆ v (k − j , t − s )) ds · − − − − � t � t � | β k | h ∗ h (k) h (k − j) h (j) � ν | β k | 2 exp[ − ν | β k | 2 s ] = (1 + α 2 | β j | 2 ) ν | β k | 2 h ∗ h (k) 0 j � �� � � �� � h (k) q 0 m ( α ) W (j , n;k) (j , k − j) 0 � � e k · ˆ π k (ˆ v (j , t − s ) v (k − j , t − s ) ( − i ) ) ds h (j) h (k − j) � �� � Q 0 ( a , b ;j , n) Special Semester on Stochastics with Emphasis on Finance

  18. Fourier transform rescaled by h(k). χ (k , t ) = ˆ v (k , t ) g (k , t ) ˆ ϕ (k , t ) = ν | β k | 2 h (k) q 3 h (k) , Equivalent LANS-alpha formulation exp[ − ν | β k | 2 t ] χ 0 (k) χ (k , t ) = � t 2 � ν | β k | 2 exp[ − ν | β k | 2 s ] + q l 0 l =0 � m ( α ) (j , n) Q l ( χ (j , t − s ) , χ (n , t − s ); j , n) W (j , n; k) ds l � �� � � �� � j , n branching multipliers � t ν | β k | 2 exp[ − ν | β k | 2 s ] ϕ (k , t − s ) ds + q 3 0 Special Semester on Stochastics with Emphasis on Finance

  19. 3 Offspring Type � 0 < q i < 1 , q i = 1 , | Q l ( a , b ; j , n) | ≤ | a || b | Probabilities i =0 W (j , n; k) = h (j) h (n) Branching distribution h ∗ h (k) δ k (j , n) , | , Random Variables and distribution S v , k v , κ v Indexed by v ∈ V = ∪ ∞ n =0 { 1 , 2 } n . L = Exp ( ν | k v | 2 ) , P ( κ v = i ) = q i , i = 0 , 1 , 2 , 3 . S v k v 1 + k v 2 = k v W (j , n : k ) = h (j) h (n) ( h ∗ h )(k) δ k (j , n) Special Semester on Stochastics with Emphasis on Finance

Recommend


More recommend