model checking stochastic branching processes
play

Model Checking Stochastic Branching Processes Taolue Chen Klaus Dr - PowerPoint PPT Presentation

Model Checking Stochastic Branching Processes Taolue Chen Klaus Dr ager Stefan Kiefer University of Oxford, UK MFCS 2012, Bratislava 27 August 2012 Taolue Chen, Klaus Dr ager, Stefan Kiefer Model Checking Stochastic Branching Processes


  1. Model Checking Stochastic Branching Processes Taolue Chen Klaus Dr¨ ager Stefan Kiefer University of Oxford, UK MFCS 2012, Bratislava 27 August 2012 Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  2. Topic of the Talk Two classical model-checking problems: Does a given non-deterministic transition system 1 satisfy a given property? What’s the probability that a given Markov chain 2 satisfies a given property? We consider linear-time properties: ω -regular specifications, e.g., LTL formulae. Our plan: Define a natural generalisation of those problems. Solve the generalised problem. Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  3. Nondeterministic Transition Systems induces a unique tree: X X Y X Y textual representation: X Y Y X ֒ → XY − Y ֒ → Y − X Y Y Y (one rule for each state) . . . . . . . . . . . . Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  4. Nondeterministic Transition Systems induces a unique tree: X X Y X Y textual representation: X Y Y X ֒ → XY − Y ֒ − → Y X Y Y Y (one rule for each state) . . . . . . . . . . . . Do all branches of the tree satisfy � ( Y → � Y ) ? Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  5. Nondeterministic Transition Systems induces a unique tree: X X Y X Y textual representation: X Y Y X ֒ → XY − Y ֒ − → Y X Y Y Y (one rule for each state) . . . . . . . . . . . . Do all branches of the tree satisfy � ( Y → � Y ) ? Yes. Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  6. Nondeterministic Transition Systems induces a unique tree: X X Y X Y textual representation: X Y Y X ֒ − → XY Y ֒ → Y − X Y Y Y (one rule for each state) . . . . . . . . . . . . Do all branches of the tree satisfy � ( Y → � Y ) ? Yes. Do all branches of the tree satisfy ♦ Y ? Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  7. Nondeterministic Transition Systems induces a unique tree: X X Y X Y textual representation: X Y Y X ֒ − → XY Y ֒ → Y − X Y Y Y (one rule for each state) . . . . . . . . . . . . Do all branches of the tree satisfy � ( Y → � Y ) ? Yes. Do all branches of the tree satisfy ♦ Y ? No. Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  8. Markov Chains induces a random “tree” (only one branch): 0 . 8 1 X 0 . 2 X Y X textual representation: 0 . 8 1 X ֒ − → X Y ֒ − → Y Y 0 . 2 X ֒ − → Y Y (multiple rules for each state) . . . Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  9. Markov Chains induces a random “tree” (only one branch): 0 . 8 1 X 0 . 2 X Y X textual representation: 0 . 8 1 X ֒ − → X Y ֒ − → Y Y 0 . 2 X ֒ − → Y Y (multiple rules for each state) . . . Does the branch satisfy ϕ 1 := � ( Y → � Y ) ? Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  10. Markov Chains induces a random “tree” (only one branch): 0 . 8 1 X 0 . 2 X Y X textual representation: 0 . 8 1 X ֒ − → X Y ֒ − → Y Y 0 . 2 X ֒ − → Y Y (multiple rules for each state) . . . Does the branch satisfy ϕ 1 := � ( Y → � Y ) ? Pr ( ϕ 1 ) = 1 Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  11. Markov Chains induces a random “tree” (only one branch): 0 . 8 1 X 0 . 2 X Y X textual representation: 0 . 8 1 X ֒ − → X Y ֒ − → Y Y 0 . 2 X ֒ − → Y Y (multiple rules for each state) . . . Does the branch satisfy ϕ 1 := � ( Y → � Y ) ? Pr ( ϕ 1 ) = 1 Does the branch satisfy ϕ 2 := ♦ Y ? Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  12. Markov Chains induces a random “tree” (only one branch): 0 . 8 1 X 0 . 2 X Y X textual representation: 0 . 8 1 X ֒ − → X Y ֒ − → Y Y 0 . 2 X ֒ − → Y Y (multiple rules for each state) . . . Does the branch satisfy ϕ 1 := � ( Y → � Y ) ? Pr ( ϕ 1 ) = 1 Does the branch satisfy ϕ 2 := ♦ Y ? Pr ( ϕ 2 ) = 1 Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  13. Markov Chains induces a random “tree” (only one branch): 0 . 8 1 X 0 . 2 X Y X textual representation: 0 . 8 1 X ֒ − → X Y ֒ → Y − Y 0 . 2 X ֒ − → Y Y (multiple rules for each state) . . . Does the branch satisfy ϕ 1 := � ( Y → � Y ) ? Pr ( ϕ 1 ) = 1 Does the branch satisfy ϕ 2 := ♦ Y ? Pr ( ϕ 2 ) = 1 Does the branch satisfy ϕ 3 := Y ? Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  14. Markov Chains induces a random “tree” (only one branch): 0 . 8 1 X 0 . 2 X Y X textual representation: 0 . 8 1 X ֒ − → X Y ֒ − → Y Y 0 . 2 X ֒ − → Y Y (multiple rules for each state) . . . Does the branch satisfy ϕ 1 := � ( Y → � Y ) ? Pr ( ϕ 1 ) = 1 Does the branch satisfy ϕ 2 := ♦ Y ? Pr ( ϕ 2 ) = 1 Does the branch satisfy ϕ 3 := Y ? Pr ( ϕ 3 ) = 0 . 2 Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  15. Branching Processes nondeterministic transition system: degenerated probability distribution on trees (probability 1 for one tree, probability 0 for all others) Markov chain: probability distribution on degenerated trees (every node has just one child) branching process: probability distribution on trees 0 . 6 0 . 2 1 X ֒ − → X Y ֒ − → Z Z ֒ − → Z 0 . 4 0 . 5 X − → XY Y − → Y ֒ ֒ 0 . 3 Y ֒ − → YY New plan: model check random (infinite) trees! Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  16. Branching Processes X 0 . 6 0 . 2 1 X ֒ − → X Y ֒ − → Z Z ֒ − → Z 0 . 4 0 . 4 0 . 5 X − → XY Y − → Y ֒ ֒ X Y 0 . 3 Y ֒ − → YY 0 . 6 0 . 3 X Y Y Probability of a tree that starts 0 . 5 0 . 2 0 . 4 as on the right = 0 . 4 · 0 . 6 · 0 . 3 · 0 . 4 · 0 . 5 · 0 . 2 X Y Y Z . . . . . . . . . . . . probability measure on (infinite) trees Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  17. Model Checking: Simple Doesn’t Work 0 . 6 0 . 2 1 X X ֒ − → X Y ֒ − → Z Z ֒ − → Z 0 . 4 0 . 5 0 . 4 X ֒ − → XY Y ֒ − → Y 0 . 3 Y − → YY ֒ X Y 0 . 6 0 . 3 Consider ϕ := �♦ ( X ∨ Z ) (on all branches). X Y Y What is Pr X ( ϕ ) ? 0 . 5 0 . 2 0 . 4 “Markov-Chain” approach: Pr X ( ϕ ) = 1 X Y Y Z . . . . . . . . “Pushdown-System” approach: Pr X ( ϕ ) = 1 . . . . Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  18. Model Checking: Simple Doesn’t Work 0 . 6 0 . 2 1 X X ֒ − → X Y ֒ − → Z Z ֒ − → Z 0 . 4 0 . 5 0 . 4 X ֒ − → XY Y ֒ − → Y 0 . 3 Y − → YY ֒ X Y 0 . 6 0 . 3 Consider ϕ := �♦ ( X ∨ Z ) (on all branches). X Y Y What is Pr X ( ϕ ) ? 0 . 5 0 . 2 0 . 4 “Markov-Chain” approach: Pr X ( ϕ ) = 1 X Y Y Z . . . . . . . . “Pushdown-System” approach: Pr X ( ϕ ) = 1 . . . . correct value: Pr X ( ϕ ) = 0 Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  19. Model Checking: Simple Doesn’t Work 0 . 6 0 . 2 1 X X ֒ − → X Y ֒ − → Z Z ֒ → Z − 0 . 4 0 . 5 0 . 4 X ֒ − → XY Y ֒ − → Y 0 . 3 Y − → YY ֒ X Y 0 . 6 0 . 3 Consider ϕ := �♦ ( X ∨ Z ) (on all branches). X Y Y What is Pr X ( ϕ ) ? 0 . 5 0 . 2 0 . 4 “Markov-Chain” approach: Pr X ( ϕ ) = 1 X Y Y Z . . . . . . . . “Pushdown-System” approach: Pr X ( ϕ ) = 1 . . . . correct value: Pr X ( ϕ ) = 0 However: Swapping 0 . 2 and 0 . 3 in the rules Pr X ( ϕ ) = 1. The exact numbers matter, even for qualitative behaviour. Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  20. Properties in the paper: deterministic parity tree property more general ω -regular property along all branches more general in this talk: deterministic B¨ uchi property along all branches Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  21. Deterministic B¨ uchi Automata X , Z Y X , Z Perform a product construction with the branching process. (instance of automata-theoretic approach) Obtain a branching process with accepting states and non-accepting states. Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

  22. Branching Process with (Non-)Accepting States After product construction: X 0 . 6 0 . 2 1 X ֒ − → X Y ֒ − → Z Z ֒ → Z − X Y 0 . 4 0 . 5 X − → XY Y − → Y ֒ ֒ 0 . 3 Y ֒ − → YY X Y Y Accepting: X , Z Non-Accepting: Y X Y Y Z . . . . . . . . . . . . def a tree is good ⇐ ⇒ each branch has infinitely many accepting nodes Compute Pr X ( good ) Taolue Chen, Klaus Dr¨ ager, Stefan Kiefer Model Checking Stochastic Branching Processes

Recommend


More recommend