Bounded Arithmetic in Free Logic Yoriyuki Yamagata CTFM, 2013/02/20
π Bussβs theories π 2 β’ Language of Peano Arithmetic + β#β β a # b = 2 π β | π | β’ BASIC axioms β’ PIND π¦ π΅ , Ξ β Ξ , π΅ ( π¦ ) 2 π΅ 0 , Ξ β Ξ , π΅ ( π’ ) π , i.e. has π -alternations of where π΅ π¦ β Ξ£ π bounded quantifiers βπ¦ β€ π’ , βπ¦ β€ π’ .
π PH and Bussβs theories π 2 1 = π 2 2 = π 2 3 = β¦ π 2 Implies π ) = β¦ π = β‘ ( ππ ) = β‘ ( Ξ£ 2 We can approach (non) collapse of PH from (non) collapse of hierarchy of Bussβs theories (PH = Polynomial Hierarchy)
Our approach π by GΓΆdel incompleteness theorem β’ Separate π 2 β’ Use analogy of separation of π½Ξ£ π
Separation of π½Ξ£ π β¦ π½Ξ£ 3 β’ Con(I Ξ£ 2 ) β π½Ξ£ 2 β’ Con I Ξ£ 2 β π½Ξ£ 1
π Consistency proof inside π 2 β’ Bounded Arithmetics generally are not capable to prove consistency. β π 2 does not prove consistency of Q (Paris, Wilkie) β π 2 does not prove bounded consistency of 1 (PudlΓ‘k) π 2 π does not prove consistency the πΆ π π fragement β π 2 β1 (Buss and IgnjatoviΔ ) of π 2
Buss and IgnjatoviΔ (1995) β¦ 3 β’ πΆ 3 b β Con( π 2 β1 ) π 2 β 2 β’ πΆ 2 b β Con( π 2 β1 ) π 2 β 1 β’ πΆ 1 b β Con( π 2 β1 ) π 2
Whereβ¦ π β π·π·π· π β’ πΆ π π β proofs β consistency of πΆ π π β proofs : the proofs by πΆ π π -formule β πΆ π π : Ξ£ 0 π ) β¦ Formulas generated from Ξ£ π π by π ( Ξ£ π β πΆ π Boolean connectives and sharply bounded quantifiers. β1 β’ π 2 π β Induction free fragment of π 2
Ifβ¦ π β’ πΆ i b β Con π 2 β1 , j > i π 2 Then, Bussβs hierarchy does not collapse.
β1 inside π 2 π Consistency proof of π 2 Problem β’ No truth definition, because β’ No valuation of terms, because β’ The values of terms increase exponentially β’ E.g. 2#2#2#2#2#...#2 π world, terms do not have values a priori . In π 2 β’ Thus, we must prove the existence of values in proofs. β’ We introduce the predicate πΉ which signifies existence of values.
Our result(2012) β¦ 5 β’ 3 β Con( π 2 β1 πΉ ) π 2 β 4 β’ 2 β Con( π 2 β1 πΉ ) π 2 β 3 β’ 1 β Con( π 2 β1 πΉ ) π 2
Whereβ¦ β’ π β π·π·π· π β consistency of π -normal proofs β π -normal proofs : the proofs by π -normal formulas β π -normal formulas: Formulas in the form: βπ¦ 1 β€ π’ 1 βπ¦ 2 β€ π’ 2 β¦ π π¦ π β€ π’ π π π¦ π+1 β€ π’ π+1 . π΅ (β¦ ) Where π΅ is quantifier free
Whereβ¦ β1 πΉ β’ π 2 π πΉ β Induction free fragment of π 2 β have predicate πΉ which signifies existence of values β’ Such logic is called Free logic
π πΉ (Language) π 2 Predicates β’ =, β€ , πΉ Function symbols β’ Finite number of polynomial functions Formulas β’ Atomic formula, negated atomic formula β’ π΅ β¨ πΆ , π΅ β§ πΆ β’ Bounded quantifiers
π πΉ (Axioms) π 2 β’ πΉ -axioms β’ Equality axioms β’ Data axioms β’ Defining axioms β’ Auxiliary axioms
Idea behind axiomsβ¦ β π = π Because there is no guarantee of πΉπ Thus, we add πΉπ in the antecedent πΉπ β π = π
E-axioms β’ πΉπΉ π 1 , β¦ , π π β πΉπ π β’ π 1 = π 2 β πΉπ π β’ π 1 β π 2 β πΉπ π β’ π 1 β€ π 2 β πΉπ π β’ Β¬ π 1 β€ π 2 β πΉπ π
Equality axioms β’ πΉπ β π = π β’ πΉπΉ π β , π β = π β πΉ π β = πΉ π
Data axioms β’ β πΉπΉ β’ πΉπ β πΉπ‘ 0 π β’ πΉπ β πΉπ‘ 1 π
Defining axioms πΉ π£ π 1 , π 2 , β¦ , π π = π’ ( π 1 , β¦ , π π ) π£ π = 0, π , π‘ 0 π , π‘ 1 π πΉπ 1 , β¦ , πΉπ π , πΉπ’ π 1 , β¦ , π π β πΉ π£ π 1 , π 2 , β¦ , π π = π’ ( π 1 , β¦ , π π )
Auxiliary axioms π = π β π # π = π # π πΉπ # π , πΉπ # π , π = | π | β π # π = π # π
PIND-rule π -formulas where π΅ is an Ξ£ π
π πΉ Bootstrapping π 2 π πΉ β’ Tot( πΉ ) for any πΉ , π β₯ 0 I. π 2 π πΉ β’ BASIC β , equality axioms β II. π 2 π πΉ β’ predicate logic β III. π 2 π βPIND β π πΉ β’ Ξ£ π IV. π 2
Theorem (Consistency) π+2 β’ i β Con( π 2 β1 πΉ ) π 2
Valuation trees Ο -valuation tree bounded by 19 Ο(a)=2, Ο(b)=3 a=2 a#a=16 b=3 a#a+b=19 π€ π # π + π , π β 19 19 π π€ π’ , π β π£ π is Ξ£ 1
Bounded truth definition (1) β’ π π£ , π’ 1 = π’ 2 , π β def βπ β€ π£ , π€ π’ 1 , π β π£ π β§ π€ π’ 1 , π β π£ π β’ π π£ , π 1 β§ π 2 , π β def π π£ , π 1 , π β§ π π£ , π 2 , π β’ π π£ , π 1 β¨ π 2 , π β def π π£ , π 1 , π β¨ π π£ , π 2 , π
Bounded truth definition (2) β’ π π£ , βπ¦ β€ π’ , π ( π¦ ) , π β def βπ β€ π£ , π€ π’ , π β π£ π β§ βπ β€ π , π π£ , π π¦ , π π¦ β¦ π β’ π π£ , βπ¦ β€ π’ , π ( π¦ ) , π β def βπ β€ π£ , π€ π’ , π β π£ π β§ βπ β€ π , π ( π£ , π π¦ , π [ π¦ β¦ π ]) π , π π£ , π is Ξ£ π+1 π Remark: If π is Ξ£ π
induction hypothesis π£ : enough large integer π : node of a proof of 0=1 Ξ π β Ξ π : the sequent of node π π : assignment π π β€ π£ βπ£ β² β€ π£ β π , { βπ΅ β Ξ π π π£ β² , π΅ , π β [ βπΆ β Ξ r , π ( π£ β² β π , πΆ , π ) ]}
Conjecture β1 πΉ is weak enough β’ π 2 π+2 can prove π -consistency of π 2 β1 πΉ β π 2 β1 πΉ is strong enough β’ While π 2 π πΉ can interpret π 2 π β π 2 β’ Conjecture β1 πΉ is a good candidate to separate π 2 π and π 2 π+2 . π 2
Future works β’ Long-term goal π β’ πβCon(π 2 β1 πΉ )? π 2 β’ Short-term goal π πΉ β Simplify π 2
Publications β’ Bounded Arithmetic in Free Logic Logical Methods in Computer Science Volume 8, Issue 3, Aug. 10, 2012
Recommend
More recommend