black resonators and
play

Black resonators and geons in AdS 5 Takaaki Ishii Kyoto University - PowerPoint PPT Presentation

Black resonators and geons in AdS 5 Takaaki Ishii Kyoto University CQG36(2019)125011 arXiv:1810.11089 [hep-th] and work in progress with Keiju Murata, Jorge Santos, Benson Way 19 Aug 2019, Strings and Fields 2019 @YITP Introduction Motivations


  1. Black resonators and geons in AdS 5 Takaaki Ishii Kyoto University CQG36(2019)125011 arXiv:1810.11089 [hep-th] and work in progress with Keiju Murata, Jorge Santos, Benson Way 19 Aug 2019, Strings and Fields 2019 @YITP

  2. Introduction

  3. Motivations Gravity in higher dimensions and AdS spacetime Non-uniqueness and various black holes Instabilities and dynamics of such black holes

  4. Superradiance a m p l i fi e d Rotational superradiance: Waves can be amplified by a rotating BH. (cf. charged superradiance by a charged BH)

  5. Superradiant instability superradiance superradiance In AdS, superradiance repeats, and the growth of the wave gives rise to an instability. [Kunduri-Lucietti-Reall]

  6. New solution with a helical Killing vector l a c i l e h superradiance time superradiance rotation New solutions with less isometries will bifurcate from the onset of the instability. [Kunduri-Lucietti-Reall]

  7. Black resonators Black holes with a single Killing vector field: black resonators Oscar J. C. Dias, 1, ∗ Jorge E. Santos, 2, † and Benson Way 2, ‡ ´ 1 STAG research centre and Mathematical Sciences, University of Southampton, UK 2 DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK We numerically construct asymptotically anti-de Sitter (AdS) black holes in four dimensions that contain only a single Killing vector field. These solutions, which we coin black resonators , link arXiv:1505.04793 [hep-th] Time-periodic black holes were constructed in AdS 4 and named black resonators .

  8. This talk The first black resonators were obtained by solving PDEs in 4D AdS. [Dias-Santos-Way] " � y 2 q 1 ∆ ( y ) (d ⌧ + y q 6 d y ) 2 + 4 y 2 + q 2 d y 2 + 4 y 2 L 2 + q 3 ⌘ 2 d s 2 = ⇣ p 2 � x 2 q 7 d y + y 2 x p 2 � x 2 q 8 d ⌧ d x + yx (1 � y 2 ) 2 2 � x 2 ∆ ( y ) p ! 2 # 2 � x 2 q 9 d x d � � y 2 q 5 d ⌧ + x + (1 � x 2 ) 2 y 2 + q 4 + y q 10 d y , (6) 1 � x 2 In 5D, we can write a simple metric and obtain a class of black resonators by solving ODEs. [TI-Murata]

  9. Geons This term was coined by Wheeler as "gravitational and electromagnetic entities." Geons are self-gravitating horizonless geometries. In the limit of zero horizon size, black resonators smoothly reduce to geons.

  10. Contents 1. Introduction 2. Myers-Perry AdS BH with equal angular momenta 3. Superradiant instability 4. Black resonators and geons 5. Conclusion

  11. Myers-Perry AdS BH with equal angular momenta

  12. <latexit sha1_base64="ovoua7z0ufmVbwRv93iIzkgilOE=">A CtnichVFNTxQxGH4Y/MBFZYGLiZeJGwgmLukQ+QgJCdGDHjywuy QUNh0ZrtDw+zM0OluxMn+Af+AB0+aG P8Af4AL/4BDhy4YgxHTLxw8N3ZSYwS9W3aPn36Pm+ftm4cqMQwdjxkDV+5eu36yI3C6M1bt8eK4xMbSdTRnqx7URDpLVckMlChrBtlArkVaynabiA3 f3H/f3NrtSJisJ1cxjLnb wQ9VSnjBENYqV2gpvaeGlTi91Fnis7CeN+R5XobGbu/P bZ4caJOW/R4PZMvMVMtz/BlVbwqulb9n7j+w+UFHNO2cXSkvNIolNsuysC8DJwcl5LEWFd+Do4kIHjpoQyKEIRxAIKG2DQcM XE7SInThFS2L9FDgbQdypKUIYjdp9Gn1XbOhrTu10wytUenBNQ1KW1MsSP2gZ2zL+wj+8Yu/lorzWr0vRzS7A60Mm6MvbxT+/FfVZtmg71fqn96Nmh KfOqyHucMf1beAN9 8Wr89pydSqdZm/ZGfl/w47Z 7pB2P3uvavI6msU6AOcP5/7MtiYm3UIVx6WVh/lXzGCu7iHGXrvRaziKdZQp3M/4QSn+GotWbuWtPxBqjWUaybxW1jxT96Op+o=</latexit> <latexit sha1_base64="y2SlcDTAl/jOTNtc uGK0g1HDOA=">A CoHichVFNSxtRFD1Oq7WpmthuCm4Gg6KI4U4qtLQIUjfuN qoaEyYj5c4OF/MvATskD/gH3DhykIp4s/oQpe6 MKfULq04MaFN5MBUVHvMO/e +49 53 nhE4diSJLnqUFy97+171v868GRgcyuaG365GfjM0Rdn0HT9cN/RIOLYnytKWjlgPQqG7hiPWjJ35Tn2tJcLI9r1vcjcQW67e8Oy6beqSoVruixV i+qsOj2hTYXV4qRqSc6n1Eo91M3Y qgdJ5U2g+xUq7LoioZe+1At1nJ5KlBi6sNAS4M8Ulvyc79QgQUfJp wIeB cuxAR8TfJjQ Asa2EDMWcmQndYE2MsxtcpfgDp3RHV4bnG2mqMd5Z2aUsE3exeE/ZKaKMfpDR3RJp3RMf+n60VlxMqOjZ e90eWKoJbde79y9SzLZS+xfct6UrNEHZ8SrTZrDxKkcwqzy29 379c+bw8Fo/TD/rH+g/pgn7zCbzWf/NnS wfIM PoN2/7ofBarGgU ErzeTnvqZP0Y8RjGKC7/sj5rCAJZR530Oc4AznyqiyoCwqpW6r0pNy3uGOKRs3TUKcrQ= </latexit> Setup 5D pure Einstein gravity (AdS radius L=1) Asymptotically global AdS (RxS 3 boundary at r= ∞ )

  13. <latexit sha1_base64="Q0jIq+gbSQhINXkA Dk8Ohxo86k=">A ClXicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoF acX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQsYBMWXKMSUZOamFisE+2uYaCrYKiALhWoYa Jw4gWUDfQMwEABk2EIZSgzQEFAvsByh iGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5+ SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7y L8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtA hrc5gwODB0MAQyjQ3mkMexiOMhxjEmeyZXJhcoMoZWKE6hFmQAFM/gCsopkG</latexit> <latexit sha1_base64="I80GW1x8EXRIknItJDl6pZO+chg=">A CnHichVHLShxBFD12XmbycGI2ASE0GRSDZLgzCoaAMBgJgRAcHzMKj P0o2bS2C+qawa0mR/wB7IQFwohiJ/hJou4zMJPCFkayCYLb/c0SCKJt+mqc0/dc+tUlRm6TqSIzoa0Gzdv3b4zfDd37/6DhyP5R6P1KOhKS9SswA3kumlEwnV8UVO csV6KIXhma5YM7deJ+trPSEjJ/BX1XYoNj2j4zt xzIU 638rB01y/qc/uLNpHyu24qTKb3RloYV27JZ7scJ32eOE91uLHqiY7Sm +VWvkBFSkO/CkoZKC LapD/jAZsBLDQhQcBH4qxCwMRfxsogRAyt4mYOcnISdcF+sixtstVgisMZrd47HC2kbE+50nPKFVbvIvLv2SljnH6Rkd0Tl/omL7T73/2itMeiZdtns2BVoStkd0nK7+uVXk8K3y4VP3Xs0IbL1OvDnsPUyY5hTXQ93Y+nq+8Wh6PJ+iQfrD/AzqjEz6B3/tpfVoSy3vI8QOU/r7uq6BeLpami7Q0U6jMZ08xjDE8wyTf9ywqeIsqarzvPk7wFafaU21Be6e9H5RqQ5nmMf4IrX4BiOubjA= </latexit> <latexit sha1_base64="jBkfENYqGJ7gKmnLCzKvYVGpxvI=">A CgHichVG7SgNBFD2u7/iK2g 2waDEJt4VQbESbSxN CqohN1 CH7YncS0GBh6w9YWClIEBv9Bht/wMJPE sFGwtvNgu+UO8wM2fO3HPnzIzp2zJURA9NWnNLa1t7R2eiq7unty/ZP7AaeuXAEgXLs71g3TRCYUtXFJRUtlj3A2E4pi3WzNJCfX+tIoJQeu6K2vfFlmPsunJHWoZiqpgczhdValNJR4SpQkYf/4yLyTRlKYrUT6DHI 04lrxkDZvYhgcLZTgQcKEY2zAQctuADoLP3BaqzAWMZLQvcIgEa8ucJTjDYLbE4y6vNmLW5XW9ZhipLT7F5h6wMoVRuqdLeqY7uqJHevu1VjWqUfeyz7PZ0Aq/2Hc8tPz6r8rhW HvQ/WnZ4UdzEReJXv3I6Z+C6uhrxycPC/P5kerY3ROT+z/jB7olm/gVl6si5zInyLBH6B/f+6fYHUyq1NWz02l5+bjr+jAMEaQ4fe xhwWsYQCn3uEGq5xo2laRpvQ9Eaq1hRrBvEltNl3SHWSBQ= </latexit> <latexit sha1_base64="tmTRePwQ T+/83vR ZRwNXL8/I8=">A EPnichVHdahNBFD7Z9afGn6Z6I3gzGhpSQsLsIi CWNQLb4S2MW2h24TdzSQZun/MTgJ1yQv4Al54pSAivoTgjS8g2BcQRMSLCnrh Wc3Y7O1ps6yO2fP+b5zvm/GiTweS0r3Cp +4uSp03NnimfPnb8wX1q4uB6HQ+Gylht6odh07Jh5PGAtyaXHNiPBbN/x2Iazcy+tb4yYiHkYPJK7Edv27X7Ae9y1JaY6C4WP3bhtktsVUrd6wnYT6z7zpF01aqJtLo0Tq8n7vt0xiArM elKJNSIgotB2DbHyXrdfIglS3KvyxIxzkGw8AdGLI/1ZJXkR82YQeoKlRViHmBH6ypRAyw5YEidctPZI1tEA47wKRU5bhgfSzVzVMQJ3h/IpZQRhMHQd5g l Ws1A7bVdIPDKumOdci 1FZBj9QOctJTv4/mpi5JukpzvCUM9I2O6UybdBskaOBoYIyqLUSl 6B V0IwYUh+MAgAImxBzbE+GyBARQizG1DgjmBEc/qDMZQRO4QUQwRNmZ38NvHvy2VDfA/7RlnbBenePgKZBJYpB/oa7pP39M39DP9NbNXkvVItezi7ky4LOrMP7nc/PFflo+7hMGUdaxmCT24mWnlqD3KMqkLd8IfPX6 37y1tphU6Av6BfU/p3v0HToIRt/dl6ts7RkU8QKMv4/7aLBuNgzaMFavl5fvq uYgytwDap43jdgGR7ACrTA1e5oTAu0UH+rf9K/6t8mUK2gOJfg0NJ/ gY/0DKM</latexit> Isometries of 5D black holes Schwarzschild: General Myers-Perry: Myers-Perry with equal angular momenta: ⇒ broken to a helical Killing vector

  14. <latexit sha1_base64="(nul )">(nul )</latexit> <latexit sha1_base64="(nul )">(nul )</latexit> MPAdS 5 with equal angular momenta S 2 S 1 fiber SU(2) invariant 1-forms ( θ , φ , χ : Euler angles of S 3 ) U(1) isometry: (No � - dependence in ) χ

  15. Superradiant instability

  16. <latexit sha1_base64="WjeEGvNJNQfmzoRTRhIWsJxXywc=">A C83ichVHLahRBFL3dvuL4yBg3opvGMTIhZLjdBCJCIOjGZR5OEkinm+qemkmR6gfV1YOxmR/I lsXWRkUEfEr3PgDLvIJ4jIBNy683dPgIxhv03VPnbrn1qmqIJUi04jHhn h4qXLVyauNq5dv3Fzsnlraj1LchXybpjIRG0GLONSxLyrhZ 8M1WcRYHkG8Hu03J9Y8hVJpL4ud5L+XbEBrHoi5BpovzmgdvjUjNr4BdulLtxPuq98AhZ YrzRcvtKxYWynNGxfzIq tdJtMd1lYzVtvNxCBivu05czV0PGdmsfGbzjlHN+s5szWcI53fbGEHq7DOArsGLahjOWm+Axd6kEAIOUTAIQZNWAKDjL4tsAEhJW4bCuIUIVGtcxhBg7Q5VXGqYMTu0jig2VbNxjQve2aVOqRdJP2KlBZM4xd8jyf4GT/gV/zxz15F1aP0skc5G t56k/u31n7/l9VRFnDzi/VuZ419OFR5VWQ97RiylOEY/3w5auTtcer08VDPMJv5P81HuMnOkE8PA3frvDVQ2jQA9h/X/dZsO50bOzYK/OtpSf1U0zAPbgPb rvBViCZ7AMXdr31LhrtIwHZm4emkfm 3GpadSa2/BHmB9/Al4KvOI=</latexit> <latexit sha1_base64="92zScjS 6x3wnqDEYfK/GQ2yVqs=">A ClHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoF acX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvox RnpucmxlfHFOTWKsSkFpZmliloQAUNFWJyCxQyFaBcI019o3gBZQM9AzBQwGQYQhnKDFAQkC+wnCG IYUhnyGZoZQhlyGVIY+hBMjOYUhkKAbCaAZDBgOGAqBYLEM1UKwIyMoEy6cy1DJwAfW AlWlAlUkAkWzgWQ6kBcNFc0D8kFmFoN1JwNtyQHiIqBOBQZVg6sGKw0+G5w WG3w0uAPTrOqwWaA3FIJpJMgelML4vm7JIK/E9SVC6RLGDIQuvC6uYQhjcEC7NZMoNsLwCIgXyRD9JdVTf8cbBWkWq1msMjgNdD9Cw1uGhwG+iCv7Evy0sDUoNkMXMAIMEQPbkxGmJGeobGeQaCJsoMTNCo4GKQZlBg0gOFtzuDA4MEQwBAKtHcqw26GIwxHmcSYbJicmVwhSpkYoXqEGVA kx8ApE+a8g= </latexit> SU(2)-preserving U(1)-breaking perturbation To break the U(1), we unbalance . For technical reasons, we work in the rotating frame at infinity in which and In this frame, the perturbation we consider is

Recommend


More recommend