beam condition monitor introduction
play

Beam Condition Monitor Introduction Martin Bieker on behalf of the - PowerPoint PPT Presentation

Beam Condition Monitor Introduction Martin Bieker on behalf of the Dortmund BCM group BCM / WPE introduction meeting 06.07 .2020 Motivation LHCb Experiment at the LHC Sensitive detectors close the high energy LHC beams Susceptible


  1. Beam Condition Monitor Introduction Martin Bieker on behalf of the Dortmund BCM group BCM / WPE introduction meeting— 06.07 .2020

  2. Motivation ‣ LHCb Experiment at the LHC • Sensitive detectors close the high energy LHC beams • Susceptible to adverse beam conditions - Misaligned beams - Particle showers ‣ LHCb Vertex Locator with small aperture Martin Bieker | BCM Introduction 2

  3. Beam Conditions Monitor ‣ 2 Stations • BCM-U: Shielding wall in VELO alcove • BCM-D: Between TT/UT and magnet BCM-U BCM-D Martin Bieker | BCM Introduction 3

  4. BCM components ‣ 8 diamond sensors per station • 10 mm × 10 mm × 0.5 mm ‣ Circular support structure • BCM-U: Aluminium • BCD-D: Tecapeek ‣ Read out by charge to frequency converter (CFC) cards ‣ Modified LHCb backend board Martin Bieker | BCM Introduction 4

  5. Front-end electronics ‣ Current Frequency Converter (CFC) cards • 8 channels • Current integrated over 40 μ s • 12bit ADC ‣ Data transfer • 2 redundant optical links • 800 Mbit/s 8b10b encoded data stream • CRC-32 for error detection Martin Bieker | BCM Introduction 5

  6. Diamond sensors ‣ Polycrystalline CVD diamonds ‣ 8 mm x 8mm Ti/Au metallisation ‣ Operated @ 200 V bias voltage ‣ ≅ 3 fC deposited charge per Sr-90 electron ‣ < 1 pA dark currents measured in lab setup Martin Bieker | BCM Introduction 6

  7. Lab setup ‣ Single diamond in holder inside light/ EMI shielding box ‣ Steady state DC current measured with pico ampere meter ‣ 13.4 MBq Sr-90 source with variable distance Martin Bieker | BCM Introduction 7

  8. Characterisation test beam ‣ Currently no CCE/CCD measurement possible • Measure charge deposited by single particles (DONNA project WIP) • Use defined particle flux -> accelerator beam ‣ Previous iteration of BCM diamonds characterised at ELBE source • 20 MeV electron beam • Beam current: 71 fA to 225 pA [arXiv: 1001.2487] Martin Bieker | BCM Introduction 8

  9. Backup

  10. Beam dump logic Current Measurements every 40 μ s Short range abort (~1 LHC turn) Long range abort (~14 LHC turn) Sum current per diamond Apply threshold for each over 32 measurements diamond and frame Sum diamonds in each station Threshold passed for two (excluding 2 largest and consecutive measurements ? smallest) In three neighbouring diamonds? Apply threshold Request beam dump via LHC interface Martin Bieker | BCM Introduction 10

  11. Readout during run 1&2 Martin Bieker | BCM Introduction 11

  12. Data generator & input chain Bus widths 1b 8b 10b 16b 20b Data Arria V 8b10b word Data Word Aligner FIFO LVDS RX decoding ordering stripping Data valid Parallel Loopback Serial Loopback Bit slip CFC data 8b10b encoded Arria V CFC data FIFO Frame Encoder Data Framer LVDS RX Generator 800 MHz 80 MHz 40 MHz Martin Bieker | BCM Introduction 12

  13. Upgrade readout Post Mortem data Mini crate CFC-U MIBAD Card 12 xOM 2 OM 3/4 PCIe40 SFP+ SFP+ PP Full Stream Data Mezzanine Mini crate CFC-D Slow Control/ WinCC VELO CIBU PMT UX85B D3 rack Computing Farm Martin Bieker | BCM Introduction 13

  14. MIBAD Board Machine Interface Beam Abort Decision ‣ Based on Arria V Starter Kit ‣ 8 optical links via TerasIC SFP- HSMC Card • 4x LVDS “downlink” to CFC cards • 4x XCVR “uplink” to PCIe40 ‣ Interface to LHC(b) via custom BCM mezzanine card Martin Bieker | BCM Introduction 14

  15. MIBAD architecture CFC Input/ Data Generator Data & Frame Data BCM U Monitoring Info Uplink to PCIe 40 check&sync processing Abort Control Unit Decision Threshold settings, Configuration command, BCM D LHC state, etc Machine Interface (CIBU, BCM_OK, PMT) 15 Martin Bieker | BCM Introduction

Recommend


More recommend