axion inflation naturally thermal
play

Axion Inflation: Naturally thermal Ricardo Zambujal Ferreira - PowerPoint PPT Presentation

Axion Inflation: Naturally thermal Ricardo Zambujal Ferreira Institut de Ci encies del Cosmos, Universitat de Barcelona In collaboration with Alessio Notari (JCAP 1709 (2017) no.09, 007, 1711.07483) Ricardo Zambujal Ferreira Axion


  1. Axion Inflation: Naturally thermal Ricardo Zambujal Ferreira Institut de Ci´ encies del Cosmos, Universitat de Barcelona In collaboration with Alessio Notari (JCAP 1709 (2017) no.09, 007, 1711.07483) Ricardo Zambujal Ferreira Axion Inflation: Naturally thermal

  2. Axions in inflation • Appealing way of realizing inflation; mass is protected by the (discrete) shift symmetry. E.g.: Natural Inflation [Freese, Frieman and Olinto ’90] L φ = ( ∂ µ φ ) 2 + Λ 4 (1 + cos( φ/f )) • Axions ( φ ) are expected to couple to gauge fields through an axial coupling F µν ≡ ǫ µναβ φ f F µν ˜ F µν , ˜ √− g F αβ where f is the axion decay constant. Moreover, the universe has to reheat. This coupling is an efficient and safe way to do it. • When φ develops a VEV, parity is broken and the eom for the massless gauge field ( A ± ) during inflation becomes [Tkachev 86’, Anber&Sorbo 06’] ˙ � k 2 ± 2 kξ � φ A ′′ ± ( τ, k ) + A ± ( τ, k ) = 0 , ξ = τ 2 fH Ricardo Zambujal Ferreira Axion Inflation: Naturally thermal

  3. • Instability band: (8 ξ ) − 1 H < k/a < 2 ξH . If ξ ≃ constant: [Anber and Sorbo 06’] 1 e − ikτ , A k ( τ ) ≃ √ subhorizon 2 k 1 2 √ πkξ e πξ , A k ( τ ) ≃ superhorizon • Phenomenology: • Large loop corrections to ζ induced through the coupling 2 ξζF ˜ F P ζ O (10 − 4 ) P 2 obs e 4 πξ 2-point function : = 1-loop f equi O (10 − 7 ) P obs e 6 πξ non-Gaussianity: NL | 1-loop = • Large tensor modes, flatenning of the potential by backreaction, preheating, ... • Non-Gaussianity constraints ξ � 2 . 5 ( ξ < 2 . 2 ) on CMB scales which imposes a lower bound on f and excludes some of the interesting phenomenology. [Anber&Sorbo 09’, Sorbo 11’, Barnaby&Peloso 11’, Linde et al. 13’, Bartolo et al. 14’, Mukohyama et al. 14’, RZF &Sloth 14’, Adshead et al. 15’, Planck 15’, RZF et. al 15’, ...] Ricardo Zambujal Ferreira Axion Inflation: Naturally thermal

  4. Particle production and thermalization [ RZF &Notari 1706.00373] • But what happens when ξ ≫ 1 ? • Instability band covers subhorizon modes where particle interpretation is meaningfull. Instability ⇒ particle production of modes • Gauge field effective particle number ( N γ ) per mode k : � A ′ 2 k + k 2 A 2 1 2 + N γ ( k ) = ρ γ ( k ) N γ ( k ) ≃ 0 , k/a ≫ H � k = ⇒ N γ ( k ) ≃ e 2 πξ k 2 k 8 πξ , k/a ≪ H pol What happens when there are many particles around...? Ricardo Zambujal Ferreira Axion Inflation: Naturally thermal

  5. If gauge field is Abelian (e.g. photons) interactions are For example, the scatering rate of γγ → γγ 4 d 3 p i � � 1 � | M n | 2 × � S γγ → γγ = (2 π ) 3 (2 E i ) E 1 i =2 × B γγ → γγ ( k, p 2 , p 3 , p 4 )(2 π ) 4 δ (4) ( k µ + p µ 2 − p µ 3 − p µ 4 ) where B γγ → γγ ( p 1 , p 2 , p 3 , p 4 ) contains the phase space factors given by B γγ → γγ ( p 1 , p 2 , p 3 , p 4 ) = N γ ( p 1 ) N γ ( p 2 ) [1 + N γ ( p 3 )] [1 + N γ ( p 4 )] − ( p 1 ↔ p 3 , p 2 ↔ p 4 ) . which is ∝ N 3 γ . Ricardo Zambujal Ferreira Axion Inflation: Naturally thermal

  6. • All the scatterings are enhanced by powers of N γ . Therefore, when N γ reaches a given threshold t scatterings, decays ≪ H − 1 ⇒ thermalization • To estimate the conditions for thermalization we derive, from the eom, Boltzmann-like eqs. for N γ + ( k ) , N γ − ( k ) and N φ ( k ) : − 4 kξ Re [ g ( k, τ )] N ′ � � γ + ( k, τ ) = N γ + ( k, τ ) + 1 / 2 | g ( k, τ ) | 2 + k 2 τ N ′ N ′ γ − ( k, τ ) ≃ φ ( k, τ ) ≃ 0 where g ( k, τ ) = A ′ ( k, τ ) /A ( k, τ ) . Then, add the scatterings and decays + S ++ + S + φ + D + φ + S + − N ′ γ + ( k ) = − 4 kξ Re [ g A ( k,τ )] � � N γ + ( k ) + 1 / 2 , τ | g A ( k,τ ) | 2 + k 2 γ − ( k ) = − S + − , φ ( k ) = − S + φ − D + φ N ′ N ′ , Ricardo Zambujal Ferreira Axion Inflation: Naturally thermal

  7. • Numerically we verify that and verify that the distribution of particles approaches a Bose-Einstein distribution when � f � ξ � 0 . 44 log + 3 . 4 = ⇒ ξ � 5 . 8 H Observational Constraint ( P obs ) ζ In the backreacting and non-perturbative regime ⇒ unclear. • But if gauge fields belong to the SM thermalization is much more efficient • Many ( γψ , gg ), fixed and unsuppressed interactions (more predictive). More realistic, inflaton has to couple to SM. • For example, γψ scatterings or gluon self-interactions thermalization requires � 2 � πα EM  � 2 � HN 2 H γγ → e − e + ≫ N γγ → e − e + H ⇒ ξ � 2 . 9  2 k ∗ � 9 πα S � 2 � 2 � H HN 3 gg → gg ≫ N gg → gg H ⇒ ξ � 2 . 9  32 k ∗ Under control ! Ricardo Zambujal Ferreira Axion Inflation: Naturally thermal

  8. What happens next? • After thermalization gauge field develops a thermal mass m T = ¯ g T + m 2 � � k 2 ± 2 kξ A ′′ ± + ω 2 ω 2 T T ( k ) A ± = 0 , T ( k ) = . H 2 τ 2 τ • If m T > ξH the instability disappears and thermal bath redshifts. However, if T � H the thermal mass disappears and the instability restarts • Therefore, the system should reach an equilibrium (or oscillate around it) which balances the two terms: T eq ≃ ξH ω 2 T ( k ) � 0 ⇒ ¯ g The equilibrium temperature is linear in ξ and thus all predictions are changed! Ricardo Zambujal Ferreira Axion Inflation: Naturally thermal

Recommend


More recommend