axial kinetic theory and spin transport for massive
play

Axial kinetic theory and spin transport for massive fermions - PowerPoint PPT Presentation

Axial kinetic theory and spin transport for massive fermions Di-Lun Yang Keio Institute of Pure and Applied Science (KiPAS) Reference : Koichi Hattori (YITP) , Yoshimasa Hidaka (RIKEN), DY, arXiv:1903.01653 1 Rotating fluids with spins


  1. Axial kinetic theory and spin transport for massive fermions Di-Lun Yang Keio Institute of Pure and Applied Science (KiPAS) Reference : Koichi Hattori (YITP) , Yoshimasa Hidaka (RIKEN), DY, arXiv:1903.01653 1

  2. Rotating fluids with spins (see also Liao’s talk)  Global polarization of Λ hyperons : STAR, Nature 548 (2017) 62-65 beam direction impact parameter  self analyzing through the weak decay : (the momentum of daughter proton is preferable to align along the spin of Lambda) 2 STAR, PRC, 18

  3. Polarization led by magnetic/vortical fields  Barnett effect : magnetization of an uncharged object with rotation S. J. Barnett, 1915 𝛿 ∶ gyromagnetic ratio 𝜕 ∶ angular velocity 𝑁 = 𝜓𝜕/𝛿 𝜓 : magnetic susceptibility  Einstein-de Hass effect : change of the magnetic moment generates rotation O. W. Richardson, 1908. A. Einstein, W. J. de Haas, 1905.  chiral separation effect (CSE) and (axial-)chiral vortical effect (aCVE) : axial-charge (spin) currents led by magnetic/vortical fields for massless fermions. vorticity : aCVE : CSE : A. Vilenkin, 79, 80  mass corrections on CSE/CVE : 𝑛 𝑟 𝜏 𝐶/𝜕 K. Fukushima, D. Kharzeev, H. Warringa, 08 E. Gorbar, V. Miransky, I. Shovkovy, X. Wang, 13 D. Kharzeev, L. McLerran, H. Warringa, 08 S. Lin and L. Yang, 18 K. Landsteiner, E. Megias, F. Pena-Benitez, 11  non-equilibrium corrections D. Kharzeev, et al., 17 3 Y. Hidaka, DY, 18

  4. Evolution of the spin  Previous studies in theory focused on the polarization of hadrons in e.g. F. Becattini, et al. 13 (no dynamics of polarization) thermal equilibrium. R. Fang, et al. 16  How does the spin polarization of partons (s quark) evolve?  Current theoretical studies : Initial states pre-equilibrium QGP hadronization/ hadronic gas phase/thermaliation freeze out Initial polarization : Polarization of hadrons Final polarization : in between? ? Observed in exp. Hard scattering with in equilibrium : 𝑐 ≠ 0 e.g. statistical model spin hydro. Z.-T. Liang, X.-N. Wang, 05 (see e.g. Hongo‘s talk) F. Becattini, et al. 13 “ Quantum kinetic theory (QKT) (microscopic theory, non-equilibrium, weak EM fields, weakly coupled) for spin transport“ 4 K. Hattori, Y. Hidaka, DY, arXiv:1903.01653

  5. Quantum kinetic theory for fermions QKT for massless fermions : chiral kinetic theory (CKT)  Modified Boltzmann (Vlasov) equation with the chiral anomaly  D. T. Son and N. Yamamoto, 12 Non-field theory construction : Berry phase  M. Stephanov and Y. Yin, 12 J.-Y. Chen, et al. 14, 15 J.-W. Chen, S. Pu, Q. Wang, X.-N. Wang, 12 QFT derivation : Wigner functions (WFs)  D. T. Son & N. Yamamoto, 12 Covariant CKT in an arbitrary frame with collisions  Hidaka, Pu, DY, 16, 17 QKT for massive fermions ?  Spin is no longer enslaved by chirality : a new dynamical dof  To track both vector/axial charges and spin polarization  To reproduce CKT in the massless limit  Axial kinetic theory (AKT) : a scalar + an axial-vector equations  (in an arbitrary frame) K. Hattori, Y. Hidaka, DY, arXiv:1903.01653  Similar works : subject to the rest frame become invalid with small mass N. Weickgenannt, X. L. Sheng, E. Speranza, Q. Wang and D. H. Rischke, arXiv:1902.06513 J. H. Gao and Z. T. Liang, arXiv:1902.06510 5

  6. Wigner functions (WFs) lesser (greater) propagators :  Dirac or Weyl 𝑧 𝑦 gauge link 𝑦+𝑧 2 , 𝑍 = 𝑦 − 𝑧 𝑌 = review : J. Blaizot, E. Iancu, Phys.Rept. 359 (2002) 355-528 Wigner functions : Field-theory defined observables :  ( 𝑟 ≫ 𝜖 : weak fields) Kadanoff-Baym (KB) equations up to :  6

  7. Vector/axial bases For simplicity, we focus on the collisionless case ( Σ <(>) = 0 ).  Decomposition :  D. Vasak, M. Gyulassy, and H. T. Elze, 87 (pseudo) scalar magnetization vector/axial-charge currents condensates 10 vector/tensor equations with implicit redundancies Reducing redundant dof : replacing and in terms of and .  e.g. Master equations :  7

  8. Leading-order kinetic equations Perturbative solution :  Leading order (LO) :  Dynamical variables : &  Spin four vector :  (vanishes on-shell) 𝑛 = 0 (spin enslavement ) LO kinetic theory :  Vlasov Eq. : BMT Eq. : Bargmann-Michel-Telegdi, 59 (off-shell, 𝑕 = 2 ) 𝑛 = 0 : BMT Eq. 8

  9. Collisionless WFs for massive fermions WFs up to :  Side-jump terms : for CVE Magnetization currents (spin-orbit int.) : Chen et al. 14. Hidaka, Pu, DY, 16 𝑛 = 0 obtained from the wave functions for free Dirac spinors instead of KB equations N. Weickgenannt, et al, arXiv:1902.06513 The rest frame : 𝑜 𝜈 = 𝑟 𝜈 /𝑛  J. H. Gao and Z. T. Liang, arXiv:1902.06510 WFs for Weyl fermions are reproduced in the massless limit  Hidaka, Pu, DY, 16, 17 9

  10. Axial kinetic theory (𝑜 𝜈 = 𝑜 𝜈 𝑌 ) AKT in an arbitrary spacetime-dep. frame :  𝑛 = 0 Scalar kinetic equation (SKE):  remaining in the massless limit CKT Axial-vector kinetic equation (AKE) :  remaining in the massless limit BMT Eq 𝑛 = 0 spin enslavement by 𝑟 𝜈 CKT chirality & momentum 10

  11. Further comments on AKT WFs are “frame independent” though the wave -function parts and  distribution functions therein are both frame dependent. Solving AKT for & with a proper choice of 𝑜 𝜈 .  Using the WFs to compute the field-theory defined observables :  (anti-)symmetric vector/axial-charge energy-momentum tensors : currents : The anti-symmetric EM tensor is responsible for angular-momentum  transfer (via spin-orbit coupling) : spin orbit (see also DY,18 for the analysis with (AM conservation ) 𝑛 = 0 ) already captured by one of master Eqs., 11

  12. Conclusions & outlook  We have presented the AKT for massive fermions with EM fields, which can track the dynamics of vector/axial charges and spin polarization.  The AKT incorporates the quantum corrections such as spin-orbit interaction and chiral anomaly.  The AKT reproduce the CKT in the massless limit with the manifestation of spin enslavement.  Extensions and applications :  Spin transport for strange quark in HIC : collisions have to be involved in AKT (where QCD enters) track the evolution of the polarization for Λ hyperons  It is not guaranteed that the polarization should reach thermal equilibrium in the hadronic phase (chemical freeze-out ≠ polarization freeze-out). 12

  13. Thank you! 13

  14. Theoretical models for spin polarization Statistical model/Wigner-function approach :  The present studies of Λ polarization assume thermal equilibrium of Λ at  freeze-out, where the polarization is mostly proportional to thermal vorticity. F. Becattini, et.al. 13 R. Fang, L.-G. Pang, Q. Wang, and X.-N. Wang, 16 Sign problem for local polarization :  Longitudinal Polarization ( 𝑄 𝑨 ): v.s. Niida, Quark matter 2018. F. Becattini, I. Karpenko, 17 (same structure, opposite signs!) 14

  15. AM conservation in global equilibrium Global equilibrium (no collisions ) :  Conservation of canonical EM & AM tensors :  orbit spin Weyl fermions :  from side-jumps DY, 18 CSE & CVE : spin-orbit cancellation  Higher orders : we need higher-order WFs.  local torque even without EM fields Near local equilibrium :  15

  16. WFs from free Dirac fields Construction from wave functions :  Lesser propagator :  Parameterizing the density operators :  parameterization : Performing 𝑞 − expansion ( expansion) WFs without EM fields  16

  17. Magnetization currents Re-parameterization :  Free WFs up to :  generalization Freedom for redefining 𝑏 𝜈 :  non-uniqueness of magnetization-current terms 17

Recommend


More recommend