auger and conversion electron spectroscopy of medical
play

Auger and conversion electron spectroscopy of medical radioisotope - PowerPoint PPT Presentation

Auger and conversion electron spectroscopy of medical radioisotope 125 I A magic bullet for cancer therapy Auger electron Presented by: Bryan Tee Pi-Ern Date: 19 th October 2018 Supervised by Dr Tibor Kibdi, A/Prof Maarten Vos and Professor


  1. Auger and conversion electron spectroscopy of medical radioisotope 125 I A magic bullet for cancer therapy Auger electron Presented by: Bryan Tee Pi-Ern Date: 19 th October 2018 Supervised by Dr Tibor Kibédi, A/Prof Maarten Vos and Professor Andrew Stuchberry

  2. Strand of human DNA α β 2

  3. Strand of human DNA Auger e - α β 3

  4. Decay scheme of 125 I 4

  5. Decay scheme of 125 I Conversion coefficient ! = # $ # % e - (Internal conversion) or γ (Gamma decay) 5

  6. Decay scheme of 125 I Mixing ratio of the M1+E2 transition is known to be small ( δ << 1). e - (Internal conversion) or γ (Gamma decay) 6

  7. Decay scheme of 125 I Penetration effects !(M1) = ! 0 ((1)(1 + * 1 + + * 2 + 2 ) Where λ = penetration parameter e - (Internal conversion) or γ (Gamma decay) 7

  8. X-ray and Auger transitions X-ray transition Auger transition K Auger yield ω K + a K = 1 E K ≈ E K - - E E L 3 L 3 M 2 M 2 K fluorescence yield E K ≈ E K - E L 3 L 3 E M 2 E E L 3 L 3 E K E K *Atomic notations: K = 1s 1/2 , L 3 = 2p 3/2 , M 2 = 3p 1/2

  9. Vacancy cascade X v Resulting in heaps of Auger electrons v Energy range: a few eV to 30 keV (for 125 I case) X K Note: X = X-ray transition, A = Auger transition 9

  10. Computational model - BriccEmis v Calculate the Auger and X-ray spectra using a Monte Carlo approach v Transition probabilities from Evaluated Atomic Data Library (EADL) (Perkins 1991) v Transition energies are calculated using the relativistic self-consistent-field Dirac Fock method, using RAINE code (Band 2002) L L 10 Probability [/100 decays] 8 6 4 KLL KLL M M,N,O 2 KLM N KLX 0 20 22 24 26 28 30 32 34 36 Energy [keV] 10

  11. Project Aims v Measure an accurate Auger yield from medical radioisotope 125 I Approach Determine the nuclear parameters ( λ and δ) I. II. Measure the Auger to conversion electrons intensity ratios. III. Deduce the absolute intensity of Auger electrons from the conversion coefficients. 11

  12. Project Aims v Measure an accurate Auger yield from medical radioisotope 125 I v Test and benchmark the model 12

  13. Source preparation v Monolayer of 125 I on top of a gold substrate 125 I Au(111) 125 I Au(111) 13

  14. High-energy electrostatic spectrometer HV hemisphere (Positive high voltage) Vos et al. (2000) Hemispherical electron 2D detector energy analyser (Close to ground potential) 14

  15. High-energy electrostatic spectrometer HV hemisphere (Positive high voltage) Energy range: 2 keV to 40 keV Vos et al. (2000) Hemispherical electron 2D detector energy analyser (Close to ground potential) 15

  16. Conversion electron measurements 16000 L 1 Brabec et al. 1982 14000 Miura et al. 1986 Casey et al. 1968 12000 2018 Present work. 2017 10000 Counts 8000 Resolution ≈ 5 eV 6000 4000 L 2 2000 L 3 0 30400 30600 30800 31000 31200 Energy [eV] 16

  17. Conversion electron line shapes Voigt profiles Main peak 17

  18. Nuclear parameters determination 125 I 35.4925 keV M1+E2 λ =5.0(21) ANU data only δ =0.0000(84) v Chi-square fitting method 2018ANU L2/L1 v Reduced χ 2 = 0.63 2018ANU L3/L1 v λ = 5.0(21), δ = 0.0000(84) 2018ANU M1/L1 Experiment Atomic shell Present work Literature 6.68(14) [12] 100/(1+ T ot ) 6.55(13) [13] 2018ANU M2/M1 12.95(28) [15] a T ot 14.25(64) [8] 0.80(5) [16] K/ (1 + T ot ) 0.804(10) [17] L/ (1 + T ot ) 0.11(2) [16] M/ (1 + T ot ) 0.020(4) [16] 2018ANU M3/M1 11.78(18) a [15] K 11.90(31) [8] L 1.4(1) [18] K/L 12.3(25) [10] L/M 5.21(26) [9] 2018ANU M2/L1 M/N 4.87(20) [9] 1:0.089(4):0.024(2) [7] 1:0.106(22):0.041(2) [10] L 1 : L 2 : L 3 1:0.085(2):0.019(2) 1:0.082(4):0.019(3) [8] 1:0.095(2):0.023(5) [9] L 1 : M 1 1: 0.204(7) - 2018ANU N1/M1 1:0.092(5):0.044(3) [8] M 1 : M 2 : M 3 1:0.094(6):0.022(7) 1:0.101(5):0.030(5) [9] L 1 : M 2 1:0.0173(26) - − 0.5 0 0.5 1 1.5 2 M 1 : N 1 1:0.179(20) 1:0.214(6) [9] α Exp / α Fit a Corrected ω K to 0.875 18

  19. Nuclear parameters determination 125 I 35.4925 keV M1+E2 λ =0.2(7) All data δ =0.0132(71) 1952Bo16 K/(1+Tot) 1952Bo16 L/(1+Tot) v Chi-square fitting method 1952Bo16 M/(1+Tot) 1959Na06 K/L 1959Na06 K/M 1959Na06 K/N v Reduced χ 2 = 1.55 1965Ge04 L1/L2 1965Ge04 L1/L3 1969Ka08 Tot 1969Ka08 K v λ = 0.2(7), δ = 0.0132(71) 1969Ca01 L1/L2 1969Ca01 L1/L3 1969Ca01 K/L 1970Ma51 K/(1+Tot) Experiment 1979CoZG Tot Atomic shell 1979CoZG K Present work Literature 1979CoZG L2/L1 6.68(14) [12] 1979CoZG L3/L1 100/(1+ T ot ) 6.55(13) [13] 1979CoZG M2/M1 12.95(28) [15] a 1979CoZG M3/M1 T ot 14.25(64) [8] 1982Br16 L/M 0.80(5) [16] 1982Br16 M/N K/ (1 + T ot ) 0.804(10) [17] 1982Br16 L1/L2 1982Br16 L1/L3 L/ (1 + T ot ) 0.11(2) [16] 1982Br16 M1/M2 M/ (1 + T ot ) 0.020(4) [16] 11.78(18) a [15] 1982Br16 M1/M3 K 1982Br16 M2/M3 11.90(31) [8] 1982Br16 M1/N1 L 1.4(1) [18] 1990Iw04 γ − ray K/L 12.3(25) [10] 1992ScZZ γ − ray L/M 5.21(26) [9] 1999Sa55 L M/N 4.87(20) [9] 2018ANU L2/L1 1:0.089(4):0.024(2) [7] 2018ANU L3/L1 1:0.106(22):0.041(2) [10] L 1 : L 2 : L 3 1:0.085(2):0.019(2) 2018ANU M1/L1 1:0.082(4):0.019(3) [8] 2018ANU M2/M1 1:0.095(2):0.023(5) [9] 2018ANU M3/M1 L 1 : M 1 1: 0.204(7) - 2018ANU M2/L1 1:0.092(5):0.044(3) [8] M 1 : M 2 : M 3 1:0.094(6):0.022(7) 2018ANU N1/M1 1:0.101(5):0.030(5) [9] L 1 : M 2 1:0.0173(26) - − 0.5 0 0.5 1 1.5 2 M 1 : N 1 1:0.179(20) 1:0.214(6) [9] α Exp / α Fit a Corrected ω K to 0.875 19

  20. KLL Auger electron measurements 10000 10000 (b) L 1 Conversion (a) KLL Auger 3500 9000 9000 Experiment KL 2 L 3 BrIccEmis 8000 8000 KL 1 L 3 + KL 2 L 2 3000 7000 7000 6000 6000 Counts KL 1 L 2 KL 3 L 3 KL 1 L 1 2500 5000 5000 4000 4000 2000 3000 3000 2000 2000 1500 1000 1000 21600 22000 22400 22800 30450 30600 Energy (eV) Energy [eV] 20

  21. KLL Auger electron measurements 10000 10000 (b) L 1 Conversion (a) KLL Auger 3500 Auger to conversion ratio 9000 9000 Experiment KL 2 L 3 BrIccEmis underestimated by 20% 8000 8000 KL 1 L 3 + KL 2 L 2 3000 7000 7000 6000 6000 Counts KL 1 L 2 KL 3 L 3 KL 1 L 1 2500 5000 5000 4000 4000 2000 3000 3000 2000 2000 1500 1000 1000 21600 22000 22400 22800 30450 30600 Energy (eV) Energy [eV] 21

  22. KLM Auger electron measurements 5000 (b) L 1 Conversion (a) KLM Auger 12000 12000 Experiment 4900 KL 3 M 1 KL 3 M 2 + KL 2 M 4 KL 2 M 5 + KL 3 M 3 BrIccEmis 11000 11000 4800 10000 10000 KL 1 M 2 9000 9000 KL 1 M 1 KL 1 M 3 4700 Counts KL 2 M 1 KL 1 M 4,5 KL 2 M 2,3 8000 8000 4600 7000 7000 4500 6000 6000 5000 5000 4400 4000 4000 25600 26000 26400 26800 30450 30600 Energy (eV) Energy (eV) 22

  23. KLM Auger electron measurements 5000 (b) L 1 Conversion (a) KLM Auger 12000 12000 Auger to conversion ratio Experiment 4900 KL 3 M 1 KL 3 M 2 + KL 2 M 4 KL 2 M 5 + KL 3 M 3 BrIccEmis underestimated by 20% 11000 11000 4800 10000 10000 KL 1 M 2 9000 9000 KL 1 M 1 KL 1 M 3 4700 Counts KL 2 M 1 KL 1 M 4,5 KL 2 M 2,3 8000 8000 4600 7000 7000 4500 6000 6000 5000 5000 4400 4000 4000 25600 26000 26400 26800 30450 30600 Energy (eV) Energy (eV) 23

  24. K fluorescence yield determination Karttunen (1969) ω K + a K = 1 Tolea (1974) Singh (1990) 0.13 0.87 30% 5% Ozdemir (2002) 0.15 Yashoda (2005) 0.85 10% 2% Present (2017) 0.12 0.88 20% EADL (1991) 3% 0.65 0.7 0.75 0.8 0.85 0.9 ω K ω K 24 24

  25. K fluorescence yield determination Karttunen (1969) ω K + a K = 1 Semi-empirical Tolea (1974) value (Schonfeld, 1996) Singh (1990) 0.13 0.87 30% 5% Ozdemir (2002) 0.15 Yashoda (2005) 0.85 10% 2% Present (2017) 0.12 0.88 20% EADL (1991) 3% 0.65 0.7 0.75 0.8 0.85 0.9 ω K ω K 25 25

  26. K fluorescence yield global fit curve Semi-empirical fit typical error: 3% Data compilation up to 2017 (ANU Summer research, 2017) 26

  27. What to do next? v Quantify the Auger electrons with energy < 1 keV v Effects of electron shake-off following internal conversion and Auger transition (the tails) v Atomic structure effect: What is the atomic field after electron capture v Potential medical isotopes to study: 80m Br, 99m Tc, 99 Mo, 119 Sc, 153 Sm, 177 Lu, 193m Pt, 195m Pt, 201 Tl, 80m Br 27

  28. Acknowledgement • Supervisors 1. Dr. Tibor Kibédi 2. A/Prof. Maarten Vos 3. Prof. Andrew Stuchbery • Collaborators 1. M. Alotiby 2. B.Q Lee 3. ANSTO (Australian Nuclear Science and Technology Organisation) 28

Recommend


More recommend