aspects of higgs portal dm models light scalar singlet
play

Aspects of Higgs portal DM models: light scalar singlet and intense - PowerPoint PPT Presentation

Aspects of Higgs portal DM models: light scalar singlet and intense -ray from hidden vector Thomas Hambye Univ. of Brussels (ULB), Belgium Firenze, 19/05/2010 Higgs portal interaction the DM particle L H H where


  1. Aspects of Higgs portal DM models: light scalar singlet and intense -ray from hidden vector γ Thomas Hambye Univ. of Brussels (ULB), Belgium Firenze, 19/05/2010

  2. Higgs portal interaction the DM particle L ∋ λ H † H φ † φ where is φ or a messenger between the SM and DM simplest way to couple the SM to a hidden sector where DM could lay

  3. Part I. DAMA and/or CoGeNT: scalar DM?? in collab. with S. Andreas, C. Arina, F.-S. Ling and M. Tytgat

  4. DAMA and/or CoGeNT ??? DAMA: CoGeNT: could have nothing to do with DM but makes sense to look for simplest possible DM explanations of them

  5. Possible DM annihilations to SM particles DM DM → f ¯ if : only m DM ∼ 10 GeV f ( f = b, c, s, d, u, τ , µ, e, ν e,µ, τ ) in 3 ways: � = BSM particle exchange Z exchange: h exchange: e.g. squarks loops, ... DM DM f f > > Z 0 h > > ¯ ¯ f f DM DM excluded by LEP to be analyzed (invisible width) Z 0

  6. Predictivity of the Higgs exchange scenario Annihilation cross section: f DM 1 f · fct ( m DM ) ∼ λ 2 1 h σ ( DM DM → f ¯ f ) v rel ∝ λ 2 h ) 2 Y 2 Y 2 f · fct ( m DM ) ( s − m 2 m 4 λ Y f h ¯ DM f Cross section on Nucleon: DM DM λ 1 hNN · fct ′ ( m DM ) ∼ λ 2 1 σ ( DM N → DM N ) ∝ λ 2 h ) 2 g 2 g 2 h hNN · fct ′ ( m DM ) ( t − m 2 m 4 h g hNN N N see also Burgess, Pospelov, ter Veldhuis 01’ the ratio of cross sections depends only on ! m DM R ≡ σ ( DM DM → f ¯ f ) v rel = fct ′′ ( m DM , Y f , g hNN ) σ ( DM N → DM N ) if one fixes the Nucleon cross section to reproduce the DAMA and/or CoGeNT the relic density is fixed

  7. The simplest DM model: a scalar singlet Mc Donald 94’, Burgess, Pospelov, ter Veldhuis 01’, DM= a real scalar singlet S: Patt, Wilczek 06’; Barger et al 08’,... assuming a symmetry L � 1 2 � µ S � µ S − 1 S S 2 − � S 4 S 4 − � L H † H S 2 Z 2 , S ↔ − S , 2 µ 2 for S stability λ = λ L v m 2 S = µ 2 S + λ L v 2 m 2 � 2 f � ( SS → ¯ L ( m 2 S − m 2 f ) 3 / 2 f f ) v rel = n c h m 3 m 4 � S � ( SN → SN ) = � 2 µ 2 r L f 2 m 2 N m 4 h m 2 � S n c m 2 ( m 2 S − m 2 f ) 3 / 2 � ( SS → ¯ f f ) v rel f R ≡ � = � f 2 m 2 N µ 2 � ( SN → SN ) m S r f f � fm N ≡ � N | qq | N � = g hNN v m q ¯ q

  8. Results for the scalar singlet & "! ratio predicted for % "! f=0.3 central value ratio required to match $ "! both DAMA and 3 # "! 0 . 094 < Ω DM h 2 < 0 . 129 " "! ! 4-5-!6"% "! 4-5-!6$! 4-5-!6'' S. Andreas, T.H., M. Tytgat 08’ ! " "! ! " # $ % & ' ( ) * + , -.-/01-2 intriguing result R ∼ m 2 S , ...

  9. Results for the scalar singlet 10 � 39 10 � 40 n � cm 2 � DAMA Σ 0 10 � 41 value of Nucleon cross section obtained once one requires 0 . 094 < Ω DM h 2 < 0 . 129 with 0 . 2 < f < 0 . 4 10 � 42 5 10 15 20 m S � GeV � S. Andreas, C. Arina, F.-S. Ling, T.H., M. Tytgat 10’

  10. Results for the scalar singlet 10 � 39 CoGeNT 10 � 40 n � cm 2 � DAMA Σ 0 10 � 41 value of Nucleon cross section obtained once one requires 0 . 094 < Ω DM h 2 < 0 . 129 with 0 . 2 < f < 0 . 4 10 � 42 5 10 15 20 m S � GeV �

  11. Results for the scalar singlet 10 � 39 CoGeNT 10 � 40 radioactivity n � cm 2 � less channeling contamination DAMA Σ 0 10 � 41 value of Nucleon cross section obtained once one requires 0 . 094 < Ω DM h 2 < 0 . 129 with 0 . 2 < f < 0 . 4 10 � 42 5 10 15 20 m S � GeV �

  12. Results for the scalar singlet CDMS Si 10 � 39 CoGeNT 10 � 40 n � cm 2 � DAMA Σ 0 10 � 41 value of Nucleon cross section obtained once one requires 0 . 094 < Ω DM h 2 < 0 . 129 with 0 . 2 < f < 0 . 4 10 � 42 5 10 15 20 m S � GeV � Xenon 10 High scintil. effic. Xenon 10 CDMS 2 events 1 σ Low scintil. effic.

  13. Issues • Experimentally: -DAMA: channeling, ... -CoGeNT: radioactivity, ... -Xenon 10 and 100: scintillation efficiency, ... -CRESST? Theoretically: -value of f? Higgs exchange scenario requires 0.2 < f < 0.6 • -why a scalar around 5-10 GeV? Ω DM / Ω B ? -fairly large value of is required: λ L | λ L | ∼ 0 . 2 m 2 S = µ 2 S + λ L v 2 tuning at the % level not apparent in model independant analysis O (10 GeV) 2 O (100 GeV) 2 such as in Fitzpatrick, Hooper, Zurek 10’

  14. Consequences for Higgs invisible decay width m H = 120 GeV m H = 180 GeV 10 � 39 10 � 39 1 1 1 1 1 1 10 � 40 10 � 40 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 n � cm 2 � n � cm 2 � Σ 0 Σ 0 10 � 41 10 � 41 0.95 0.95 0.95 0.95 0.95 0.95 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 10 � 42 10 � 42 5 10 15 20 5 10 15 20 m S � GeV � m S � GeV � 98 % < BR ( H → DMDM ) < 99 . 5 % 60 % < BR ( H → DMDM ) < 90 % DAMA and CoGeNt lead to BR distinguishable at LHC

  15. Indirect detection Feng, Kumar, Strigari 08’ rays from the galactic center: γ S. Andreas, T.H., M. Tytgat 08’ 1 � 10 � 6 EGRET 1 � 10 � 6 5 � 10 � 7 5 � 10 � 7 � GeV cm^ � 2 s^ � 1 � � GeV cm^ � 2 s^ � 1 � FERMI 1 � 10 � 7 1 � 10 � 7 5 � 10 � 8 5 � 10 � 8 NFW NFW 1 � 10 � 8 1 � 10 � 8 E 2 d � dE E 2 d � dE 5 � 10 � 9 5 � 10 � 9 1 � 10 � 9 1 � 10 � 9 hements calculés au 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 0.2 0.5 1.0 2.0 5.0 10.0 our − 2 ˚ < b < 2 ˚et Photon energy E � GeV � Photon energy E � GeV � on, r < 0 . 5 ˚ . et − 5 ˚ < l < 5 ˚ . courtesy of M. Casier and M. Tytgat SuperK sensitivity Neutrino flux from DM annihilation in the Sun: and log 10 φ µ [ km − 2 yr − 1 ] µ S (GeV) Savage, Gelmini, Gondolo, Freese 08’; Savage, Freese, Gondolo, Spolyar 09’, ... S. Andreas, M. Tytgat, Q. Swillens 08’ p, De : Bottino, Donato, Fornengo, Scopel 08’; Nezri, Tytgat, Vertongen 09’ m S (GeV) ¯

  16. Higgs exchange scenario in other scalar models the scalar DM particle doesn’t necessarily need to be a weak singlet DM = one neutral component also applies to inert doublet model of a second Higgs doublet H 0 with other neutral component heavier than A 0 ∼ 80 GeV (LEP invis. Z decay width) Z → H 0 A 0 same predictions as for the singlet

  17. Fermion DM with Higgs exchange doesn’t work! / − m 0 ) � − Y � Example: a Dirac fermion: L � ¯ ¯ � ( i � �� h √ 2 m 2 extra v 2 DM m 2 f v 2 ( m 2 � − m 2 f ) 3 / 2 Y 2 rel Annihilation: rel � v 2 �� → ¯ � ( ¯ f f ) v rel = n c suppression v 2 m 4 16 � m � h P-wave and heli- city suppressed Y 2 µ 2 � Cross section on N: r f 2 m 2 � ( � N → � N ) = N v 2 m 4 2 � h �� → ¯ = � f n c m 2 ( m 2 � − m 2 f ) 3 / 2 v 2 R ≡ � f � ( ¯ f f ) v rel much smaller predicted f rel f 2 m 2 N µ 2 � ( � N → � N ) 8 m � r DAMA and/or CoGeNT can be reproduced but give a relic abundance way too large

  18. Part II. Intense -ray lines from hidden vector DM γ in collab. with C. Arina, A. Ibarra and C. Weniger

  19. Monochromatic -ray lines: a smoking gun for DM γ annihilation leads to a monochromatic -ray line γ DM DM → γγ , γ Z (not expected in astrophysics background) e.g. obtained at one loop level rather suppressed Boudjema, Semenov, Temes 05’; Bergstrom, Ullio, 97’, 98’;Bern, Gondolo, Perelstein 97’; Bergstrom, Bringmann, Eriksson, Gustafsson 04’, 05’; e.g. needs for large boost factor or a TeV DM mass Jackson, Servant, Shaughnessy, Tait, Taoso 09’, ... one tree level exception: Dudas, Mambrini, Pokorski, Romagnoni 09‘ But what about a -ray line from DM decay????? γ has been considered from gravitino decay through R-parity violation Buchmuller, Covi, Hamagushi, Ibarra, Tran 07’; Ibarra, Tran 07’; Ishiwata, Matsumoto, Moroi 08’; Buchmuller, Ibarra, Shindou, Takayama, Tran 09’; Choi, Lopez-Fogliani, Munoz, de Austri 09’

  20. A scenario for large -ray lines through DM decays γ C. Arina, T.H., A. Ibarra, C. Weniger 09’ i.e. doesn’t result from an ad-hoc symmetry or from a gauge symmetry remnant subgroup If DM stability results from an accidental symmetry (as proton in SM) we expect higher dimensional operators destabilizing the DM to be generated by higher scale physics but a dim-6 operator leads to a a dim-5 operator leads -ray flux of order the expe- to γ τ DM << τ Universe rimental sensitivity if Λ ∼ M GUT even if Λ ∼ M P lanck as for other cosmic rays: Eichler; Nardi, Sannino, Strumia; Chen, Takahashi, Yanagida; Arvanitaki, Dimopoulos et al.; Bae, Kyae; Hamagushi, Shirai, Yanagida; ... DM model based on accidental symmetry decaying to from dim-6 operator γ

  21. Hidden vector DM based on the existence of a accidental custodial symmetry: • no possible dim-5 operators but dim-6 ones which all leads to a -ray line γ • the stability can be “understood” only from the low-energy point of view as for the proton in the SM • non-abelian global symmetry • simple viable spin- 1 DM model

Recommend


More recommend