Applied Bayesian Nonparametrics 3. Infinite Hidden Markov Models Tutorial at CVPR 2012 Erik Sudderth Brown University Work by E. Fox, E. Sudderth, M. Jordan, & A. Willsky AOAS 2011: A Sticky HDP-HMM with Application to Speaker Diarization IEEE TSP 2011 & NIPS 2008: Bayesian Nonparametric Inference of Switching Dynamic Linear Models NIPS 2009: Sharing Features among Dynamical Systems with Beta Processes
Temporal Segmentation • ! Markov switching True mode sequence Observations models for time series data • ! Cluster based on underlying mode dynamics modes Hidden Markov Model observations
Outline Temporal Segmentation ! ! How many dynamical modes? ! ! Mode persistence ! ! Complex local dynamics ! ! Multiple time series Spatial Segmentation ! ! Ising and Potts MRFs ! ! Gaussian processes
Hidden Markov Models modes Time observations Mode
Hidden Markov Models modes Time observations
Hidden Markov Models modes Time observations
Hidden Markov Models modes Time observations
Issue 1: How many modes? Infinite HMM: Beal, et.al., NIPS 2002 HDP-HMM: Teh, et. al., JASA 2006 Time Hierarchical Dirichlet Process HMM Mode • ! Dirichlet process (DP): ! ! Mode space of unbounded size ! ! Model complexity adapts to observations • ! Hierarchical: ! ! Ties mode transition distributions ! ! Shared sparsity
HDP-HMM Hierarchical Dirichlet Process HMM • ! Global transition distribution: ! • ! Mode-specific transition distributions: ! sparsity of ! is shared
Issue 2: Temporal Persistence HDP-HMM inferred mode sequence True mode sequence Hidden Markov Model
� Sticky � � HDP-HMM Time Mode
� Sticky � � HDP-HMM sticky original mode-specific base measure Increased probability of self-transition Infinite HMM: Beal, et.al., NIPS 2002
Direct Assignment Sampler • ! Marginalize: Collapsed Gibbs Sampler ! ! Transition densities ! ! Emission parameters Chinese restaurant • ! Sequentially sample: prior likelihood Conjugate base measure " " closed form Splits true mode, hard to merge
Blocked Resampling HDP-HMM weak limit approximation • ! Compute backwards messages: • ! Approximate HDP: HDP-HMM weak limit approximation " ! Average transition density " ! ( " transition densities) • ! Sample: • ! Block sample as:
Results: Gaussian Emissions HDP-HMM Sticky HDP-HMM Blocked sampler Sequential sampler
Results: Fast Switching Sticky Observations HDP-HMM True mode HDP-HMM sequence
Hyperparameters • ! Place priors on hyperparameters and infer them from data • ! Weakly informative priors • ! All results use the same settings hyperparameters can be set using the data Related self-transition parameter: Beal, et.al., NIPS 2002
HDP-HMM: Multimodal Emissions modes mixture components observations • ! Approximate multimodal emissions with DP mixture • ! Temporal mode persistence disambiguates model
Speaker Diarization 40 30 20 10 0 -10 -20 -30 0 1 2 3 4 5 6 7 8 9 10 x 10 4 J B i o Bob John Jane John l b l
Results: 21 meetings 50 &! 234 � '()*+,-./01 40 %! ICSI DERs 30 $! 20 #! 10 "! 0 ! 0 10 20 30 40 50 ! "! #! $! %! &! Sticky DERs '()*+,-./01 Overall Best Worst DER DER DER Sticky HDP-HMM 17.84% 1.26% 34.29% Non-Sticky HDP- 23.91% 6.26% 46.95% HMM ICSI 18.37% 4.39% 32.23%
Results: Meeting 1 Sticky DER = 1.26% ICSI DER = 7.56%
Results: Meeting 18 4.81% Sticky DER = 20.48% ICSI DER = 22.00%
Issue 3: Complex Local Dynamics = set of dynamic • ! Discrete clusters may parameters not accurately capture high-dimensional data • ! Autoregressive HMM: Discrete-mode switching of smooth observation dynamics modes Switching Dynamical Processes observations
Linear Dynamical Systems • ! State space LTI model: • ! Vector autoregressive (VAR) process:
Linear Dynamical Systems • ! State space LTI model: State space models VAR processes • ! Vector autoregressive (VAR) process:
Switching Dynamical Systems Switching linear dynamical system (SLDS): Switching VAR process:
HDP-AR-HMM and HDP-SLDS HDP-AR-HMM HDP-SLDS
Dancing Honey Bees
Honey Bee Results: HDP-AR(1)-HMM Sequence 1 Sequence 2 Sequence 3 HDP-AR-HMM: 88.1% HDP-AR-HMM: 92.5% HDP-AR-HMM: 88.2% SLDS [Oh]: 93.4% SLDS [Oh]: 90.2% SLDS [Oh]: 90.4%
Issue 4: Multiple Time Series • ! Goal: ! ! Transfer knowledge between related time series ! ! Allow each system to switch between an arbitrarily large set of dynamical modes • ! Method: ! ! Beta process prior ! ! Predictive distribution: Indian buffet process
IBP-AR-HMM • ! Latent features determine which dynamical modes are used Features/Modes Sequences ! • ! Beta process prior: ! ! Encourages sharing ! ! Unbounded features
Motion Capture 6 videos of exercise routines: CMU MoCap: http://mocap.cs.cmu.edu/
Library of MoCap Behaviors
!"#$%&'()*+$,-'-.*'$ /0122*$*'$-34$05$678$ !"#$%&'()#*(*+,-#."#/0(1#'+23#0'2%4'#2+*'5(067#8+*'5(06#,+9',)#:(*#40($%&'&#*(#;<=>??7# @')A,*)#/0(1#>A53')#B#CA&&'0*3-#<D8E#F(0G)3(4-#8E<@#H".H7#
,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) I(2+*%(:)#(/#)','2*#9'3+$%(0)#+20())#+,,#$%&'()#
,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) <&=)'$>?&'()$ <0(*(2(,#0'JA%0')#)K%*23%:5#,%53*#(:L(//#+*#)*+0*#+:&#M%:%)3#
,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) @A*+$B2&:=*$ <%NN+#:''&)#23'')'-#C+:&K%23#:''&)#O',,6#*(#9'5%:#40'4+0+*%(:#
,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) >*'$@9*+$ ;(*3#<%NN+)#+:&#;0(K:%')#:''&#*(#9'#9+G'&#*(#2(:2,A&'#40'4+0+*%(:#
,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) C2-'*$!)**.*$ D:,6#%:#<%NN+#E%&'()#
,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) >'&2$;1?3$ P:%JA'#*(#;0(K:%')-#9A*#1A,*%4,'#)*6,')#'Q%)*R#C*+99%:5#$)7#)K%0,%:5-#'*27#
Recommend
More recommend