applied bayesian nonparametrics 3 infinite hidden markov
play

Applied Bayesian Nonparametrics 3. Infinite Hidden Markov Models - PowerPoint PPT Presentation

Applied Bayesian Nonparametrics 3. Infinite Hidden Markov Models Tutorial at CVPR 2012 Erik Sudderth Brown University Work by E. Fox, E. Sudderth, M. Jordan, & A. Willsky AOAS 2011: A Sticky HDP-HMM with Application to Speaker Diarization


  1. Applied Bayesian Nonparametrics 3. Infinite Hidden Markov Models Tutorial at CVPR 2012 Erik Sudderth Brown University Work by E. Fox, E. Sudderth, M. Jordan, & A. Willsky AOAS 2011: A Sticky HDP-HMM with Application to Speaker Diarization IEEE TSP 2011 & NIPS 2008: Bayesian Nonparametric Inference of Switching Dynamic Linear Models NIPS 2009: Sharing Features among Dynamical Systems with Beta Processes

  2. Temporal Segmentation • ! Markov switching True mode sequence Observations models for time series data • ! Cluster based on underlying mode dynamics modes Hidden Markov Model observations

  3. Outline Temporal Segmentation ! ! How many dynamical modes? ! ! Mode persistence ! ! Complex local dynamics ! ! Multiple time series Spatial Segmentation ! ! Ising and Potts MRFs ! ! Gaussian processes

  4. Hidden Markov Models modes Time observations Mode

  5. Hidden Markov Models modes Time observations

  6. Hidden Markov Models modes Time observations

  7. Hidden Markov Models modes Time observations

  8. Issue 1: How many modes? Infinite HMM: Beal, et.al., NIPS 2002 HDP-HMM: Teh, et. al., JASA 2006 Time Hierarchical Dirichlet Process HMM Mode • ! Dirichlet process (DP): ! ! Mode space of unbounded size ! ! Model complexity adapts to observations • ! Hierarchical: ! ! Ties mode transition distributions ! ! Shared sparsity

  9. HDP-HMM Hierarchical Dirichlet Process HMM • ! Global transition distribution: ! • ! Mode-specific transition distributions: ! sparsity of ! is shared

  10. Issue 2: Temporal Persistence HDP-HMM inferred mode sequence True mode sequence Hidden Markov Model

  11. � Sticky � � HDP-HMM Time Mode

  12. � Sticky � � HDP-HMM sticky original mode-specific base measure Increased probability of self-transition Infinite HMM: Beal, et.al., NIPS 2002

  13. Direct Assignment Sampler • ! Marginalize: Collapsed Gibbs Sampler ! ! Transition densities ! ! Emission parameters Chinese restaurant • ! Sequentially sample: prior likelihood Conjugate base measure " " closed form Splits true mode, hard to merge

  14. Blocked Resampling HDP-HMM weak limit approximation • ! Compute backwards messages: • ! Approximate HDP: HDP-HMM weak limit approximation " ! Average transition density " ! ( " transition densities) • ! Sample: • ! Block sample as:

  15. Results: Gaussian Emissions HDP-HMM Sticky HDP-HMM Blocked sampler Sequential sampler

  16. Results: Fast Switching Sticky Observations HDP-HMM True mode HDP-HMM sequence

  17. Hyperparameters • ! Place priors on hyperparameters and infer them from data • ! Weakly informative priors • ! All results use the same settings hyperparameters can be set using the data Related self-transition parameter: Beal, et.al., NIPS 2002

  18. HDP-HMM: Multimodal Emissions modes mixture components observations • ! Approximate multimodal emissions with DP mixture • ! Temporal mode persistence disambiguates model

  19. Speaker Diarization 40 30 20 10 0 -10 -20 -30 0 1 2 3 4 5 6 7 8 9 10 x 10 4 J B i o Bob John Jane John l b l

  20. Results: 21 meetings 50 &! 234 � '()*+,-./01 40 %! ICSI DERs 30 $! 20 #! 10 "! 0 ! 0 10 20 30 40 50 ! "! #! $! %! &! Sticky DERs '()*+,-./01 Overall Best Worst DER DER DER Sticky HDP-HMM 17.84% 1.26% 34.29% Non-Sticky HDP- 23.91% 6.26% 46.95% HMM ICSI 18.37% 4.39% 32.23%

  21. Results: Meeting 1 Sticky DER = 1.26% ICSI DER = 7.56%

  22. Results: Meeting 18 4.81% Sticky DER = 20.48% ICSI DER = 22.00%

  23. Issue 3: Complex Local Dynamics = set of dynamic • ! Discrete clusters may parameters not accurately capture high-dimensional data • ! Autoregressive HMM: Discrete-mode switching of smooth observation dynamics modes Switching Dynamical Processes observations

  24. Linear Dynamical Systems • ! State space LTI model: • ! Vector autoregressive (VAR) process:

  25. Linear Dynamical Systems • ! State space LTI model: State space models VAR processes • ! Vector autoregressive (VAR) process:

  26. Switching Dynamical Systems Switching linear dynamical system (SLDS): Switching VAR process:

  27. HDP-AR-HMM and HDP-SLDS HDP-AR-HMM HDP-SLDS

  28. Dancing Honey Bees

  29. Honey Bee Results: HDP-AR(1)-HMM Sequence 1 Sequence 2 Sequence 3 HDP-AR-HMM: 88.1% HDP-AR-HMM: 92.5% HDP-AR-HMM: 88.2% SLDS [Oh]: 93.4% SLDS [Oh]: 90.2% SLDS [Oh]: 90.4%

  30. Issue 4: Multiple Time Series • ! Goal: ! ! Transfer knowledge between related time series ! ! Allow each system to switch between an arbitrarily large set of dynamical modes • ! Method: ! ! Beta process prior ! ! Predictive distribution: Indian buffet process

  31. IBP-AR-HMM • ! Latent features determine which dynamical modes are used Features/Modes Sequences ! • ! Beta process prior: ! ! Encourages sharing ! ! Unbounded features

  32. Motion Capture 6 videos of exercise routines: CMU MoCap: http://mocap.cs.cmu.edu/

  33. Library of MoCap Behaviors

  34. !"#$%&'()*+$,-'-.*'$ /0122*$*'$-34$05$678$ !"#$%&'()#*(*+,-#."#/0(1#'+23#0'2%4'#2+*'5(067#8+*'5(06#,+9',)#:(*#40($%&'&#*(#;<=>??7# @')A,*)#/0(1#>A53')#B#CA&&'0*3-#<D8E#F(0G)3(4-#8E<@#H".H7#

  35. ,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) I(2+*%(:)#(/#)','2*#9'3+$%(0)#+20())#+,,#$%&'()#

  36. ,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) <&=)'$>?&'()$ <0(*(2(,#0'JA%0')#)K%*23%:5#,%53*#(:L(//#+*#)*+0*#+:&#M%:%)3#

  37. ,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) @A*+$B2&:=*$ <%NN+#:''&)#23'')'-#C+:&K%23#:''&)#O',,6#*(#9'5%:#40'4+0+*%(:#

  38. ,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) >*'$@9*+$ ;(*3#<%NN+)#+:&#;0(K:%')#:''&#*(#9'#9+G'&#*(#2(:2,A&'#40'4+0+*%(:#

  39. ,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) C2-'*$!)**.*$ D:,6#%:#<%NN+#E%&'()#

  40. ,&.(19*2*:$%&'()*+$;*)-9&12.$ !"#$%&'()'!)%&*+)+,#-.+/) >'&2$;1?3$ P:%JA'#*(#;0(K:%')-#9A*#1A,*%4,'#)*6,')#'Q%)*R#C*+99%:5#$)7#)K%0,%:5-#'*27#

Recommend


More recommend