Application of the Coulomb spheroidal basis for diatomic molecular calculations T . Kereselidze and G. Chkadua Department of Exact and Natural Sciences, Tbilisi State University, 0179 Tbilisi, Georgia
Content: 1. Introduction 2. The Coulomb spheroidal wave functions 3. Basic equations E i 4. Obtained results and comparison with the characteristics of the hydrogen molecular ion H 2 + 5. Conclusion
S ym m e t rical d iat om ic m ol e cu l e S + + H , H , C , N , O H , H , C , N , O 2 2 2 2 2 2 2 2 2 2 ( ) Heitler and London LCAO Hund and Mulliken
+ Hydrogen molecular ion H 2 E r r b a R Z A =1 Z B =1
Prolate spheroidal coordinate system + − r r r r ξ = η = ϕ = a b a b , , arctg y x ( / ) R R ≤ ξ < ∞ − ≤ η ≤ ≤ ϕ < π 1 , 1 1 0 2
Schrödinger equation for hydrogen molecular ion 1 1 1 − ∆ − − Ψ ± = ε ± Ψ ± ( ) ( ) ( ) ( R ) 2 r r a b − ϕ im e ± ± Ψ = ξ η ( ) ( ) X ( , R Y ) ( , R ) n n m n m n m π ξ ξ η η 2 ± ε ( ) ( ) 2 2 d dX R m ξ − + λ + ξ + ξ − ξ = 2 2 1 2 ( , ) 0 R X R ξ ξ ξ − 2 d d 2 1 ± ± ε ( ) ( ) ( ) 2 2 d dY R m ± − η + − − λ η − η = 2 2 ( ) 1 Y ( , ) R 0 η η − η 2 d d 2 1
+ Electornic energies of H 2
H + HE GR OUND AND FIR M S OF STEXCIT ED T ER 2
i st OF P UBL ICATION : 1 T K e re Se l id ze Z S IA NI A ND G c h Kad u a P HYS J D 6 3 8 1 2 0 1 1 M A CHA VA R E UR 2 J M P e e K T K e re Se l id ze I N oSe l id ze A ND J K ie l KoP f J P HYS B A T m ol o P t P HYS 4 0 5 6 5 2 0 0 7 3 a d e vd ariaN i t m K e re Se l id ze i l N oSe l id ze e d al im ie r P S au vaN P a N ge l o aN d r S cot t P h yS r e v v a 71 P 022512 2005 4 t m K e re Se l id ze i l N oSe l id ze aN d m i c h ib iSov J P h yS b a t m ol o P t P h yS 36 853 2003 5 a z d e vd ariaN i t m K e re Se l id ze aN d i l N oSe l id ze K h im ich e SKaia P h ySica v 22 P 3 2003 6 t m K e re Se l id ze z S m ach avariaN i aN d i l N oSe l id ze J P h yS b a t m ol o P t P h yS 31 15 1998 7 t m K e re Se l id ze z S m ach avariaN i aN d i l N oSe l id ze J P h yS b a t m ol o P t P h yS 29 257 1996 8 t m K e re Se l id ze h a m ou rad aN d m f t zu l u Kid ze J P h yS b a t m ol o P t P h yS 25 2957 1992 9 t m K e re Se l id ze S ov P h yS J e t f 100 95 1991 10 m i c h ib iSov aN d t m K e re Se l id ze P re P riN t ia e 5410 6 m oScow P 1 43 1991 11 t m K e re Se l id ze P roce e d iN g of g e orgiaN a cad e m y of S cie N ce S v 139 P 481 1990 12 a z d e vd ariaN i t m K e re Se l id ze aN d a l z agre b iN J P h yS b a t m ol o P t P h yS 23 2457 1990 13T.. er esel i dze, J. hys. : t . o l . hys. 20, 1891 (1987) 14 t m K e re Se l id ze aN d b i K iKiaN i S ov P h yS J e t f 87 741 1984 15 t m K e re Se l id ze S ov P h yS J e t f 69 67 1975 16 t m K e re Se l id ze aN d o b f irSov S ov P h yS J e t f 65 98 1973
Schrödinger equation for hydrogen-like ion Z 1 − ∆ − Ψ = ε Ψ a b , a b , a b , a b , ( R ) 2 r a b , − ϕ im e Ψ = ξ η a b , a b , X ( , R Y ) ( , R ) n n m n m n m π ξ η ξ η 2 ε ( ) 2 2 d dX R m ξ − + λ + ξ + ξ − ξ = 2 2 1 ( , ) 0 ZR X R ξ ξ ξ − 2 d d 2 1 ε ( ) a b , 2 2 d dY R m − η + − − λ η η − η = 2 2 a b , 1 ZR Y ( , ) R 0 η η − η 2 d d 2 1 = + + + n n n m 1 ξ η
The Coulomb spheroidal wave functions = + + = n m 1, n n 0; 1 ξ η − ξ = ξ ZR / 2 n X e W ( ) 0 m = η η a b , ZR / 2 n Y e W ( ) 0 m = + + = n m 2, 2 n n 1,2; ξ η nh = − ξ ξ − ξ 1,2 ZR / 2 n X e W ( ) 0 m m ,1 ZR nh = η η η , / 2 1,2 a b ZR n Y e W ( ) 1 ,0 m m ZR
= + + = n m 3, n n 1,2,3; 3 ξ η 2 nh n h − ξ = ξ − ξ + − − − ξ ZR / 2 n 2 1,2,3 1,2,3 X e ( h 2 m 4) 1 W ( ) 0 m m ,1 ,2 m 1,2,3 2 2 ZR 2 Z R 2 nh n h η = η η + − − − η a b , ZR / 2 n 2 1,2,3 1,2,3 Y e ( h 2 m 4) 1 W ( ) 2 m m ,1 ,0 m 1,2,3 2 2 ZR 2 Z R W ξ = ξ − W η = − η 2 1) m / 2 2 ) m / 2 ( ) ( ( ) (1 = + + + n n n m 1 ξ η
The basic equations { } { } ξ η − ϕ ξ η − ϕ a im a im X ( , ) R Y ( , ) R e X ( , ) R Y ( , ) R e nn m nn m nn m nn m ξ η ξ η ± = η ± η ( ) a b ( , ) ( , ) Y Y R Y R nn m nn m nn m η η η ± ± ϕ Ψ ξ η ϕ = Φ ξ η ( ) ( ) im ( , , , R ) ( , , R e ) ∞ − − = ∑ ∑ n m 1 ± ± ± Φ ξ η ( ) ( ) ( ) C ( ) R X ( , R Y ) ( , R ) nn m nn m nn m η ξ η = = n 1 n 0 η
The basic equations ∞ − − ( ) n m 1 ∑ ∑ ± ± ± ± ε − + = ( ) ( ) ( ) ( ) E U V C 0 n nn η n n , nn n n , nn η η η η = = n 1 n 0 η ( ) ε ± ± ± − + = ( ) ( ) ( ) E U V 0 n n n , nn n n , nn η η η η ± = 〈 ξ 〉〈ϒ ± ϒ ± 〉 − 〈 〉 〈ϒ ± η ϒ ± 〉 ( ) 2 ( ) ( ) ( ) 2 ( ) U X X X X nn nn nn nn n n , n n n n ξ n n η n n ξ n n η η η ξ η ξ η 2 (2 ± = − 〈 ξ 〉〈ϒ ± ϒ ± 〉 ( ) ( ) ( ) V Z ) X X nn nn n n , n n n n ξ n n η R η η ξ η ± ± + 〈 〉 〈ϒ η ϒ 〉 ( ) ( ) ( ) Z X X d nn nn nn ξ η η n n n n ξ η = − 2 2 E Z / 2 n n
1 s σ e l e ct roN ic e N e rgie S for St at e ε + ( ) ( ) R au σ 1 s xac t VAL UES Z = ≠ ≠ R au 1 Z 1 Z 1 0.25 -1.4754 -1.8980 -1.8986 -1.8981 0.5 -1.4213 -1.7318 -1.7319 -1.7350 0.75 -1.3560 -1.5753 -1.5824 -1.5757 1.0 -1.2884 -1.4410 -1.4418 -1.4518 1.25 -1.2230 -1.3283 -1.3418 -1.3295 1.50 -1.1617 -1.2338 -1.2490 -1.2353 1.75 -1.1053 -1.1541 -1.1559 -1.1701 2.0 -1.0538 -1.0865 -1.1026 -1.0885 2.25 -1.0071 -1.0286 -1.0444 -1.0307 2.5 -0.9648 -0.9788 -0.9808 -0.9938 2.75 -0.9267 -0.9355 -0.9497 -0.9376 3.0 -0.8924 -0.8978 -0.9109 -0.8998 3.5 -0.8339 -0.8357 -0.8375 -0.8466 4.0 -0.7869 -0.7873 -0.7961 -0.7898 4.5 -0.7493 -0.7493 -0.7562 -0.7506 5.0 -0.7192 -0.7192 -0.7202 -0.7244 6.0 -0.6757 -0.6757 -0.6786 -0.6763 7.0 -0.6469 -0.6469 -0.6485 -0.6472 8.0 -0.6267 -0.6267 -0.6269 -0.6276 9.0 -0.6118 -0.6118 -0.6123 -0.6119 10.0 -0.6003 -0.6003 -0.6006 -0.6004 12.0 -0.5834 -0.5834 -0.5834 -0.5835 16.0 -0.5625 -0.5625 -0.5625 -0.5625 20.0 -0.5500 -0.5500 -0.5500 -0.5500
2 p π e l e ct roN ic e N e rgie S for St at e ε + ( ) ( ) R au π 2 p xac t VAL UES Z = ≠ ≠ 1 1 1 Z Z R au 0.25 -0.3746 -0.4980 -0.4880 -0.4980 0.5 -0.3735 -0.4923 -0.4923 -0.4923 0.75 -0.3716 -0.4841 -0.4839 -0.4839 1.0 -0.3692 -0.4736 -0.4737 -0.4741 1.25 -0.3662 -0.4631 -0.4622 -0.4623 1.50 -0.3627 -0.4517 -0.4503 -0.4504 1.75 -0.3589 -0.4380 -0.4382 -0.4402 2.0 -0.3548 -0.4259 -0.4288 -0.4261 2.25 -0.3504 -0.4176 -0.4140 -0.4143 2.5 -0.3458 -0.4025 -0.4029 -0.4068 2.75 -0.3411 -0.3964 -0.3914 -0.3919 3.0 -0.3363 -0.3808 -0.3864 -0.3814 3.5 -0.3266 -0.3610 -0.3619 -0.3678 4.0 -0.3169 -0.3508 -0.3432 -0.3443 4.5 -0.3073 -0.3354 -0.3272 -0.3285 5.0 -0.2979 -0.3129 -0.3143 -0.3214 6.0 -0.2803 -0.2970 -0.2884 -0.2899 7.0 -0.2642 -0.2766 -0.2684 -0.2699 8.0 -0.2499 -0.2519 -0.2534 -0.2595 9.0 -0.2374 -0.2450 -0.2383 -0.2397 10.0 -0.2265 -0.2327 -0.2269 -0.2282 12.0 -0.2092 -0.2092 -0.2102 -0.2133 16.0 -0.1871 -0.1888 -0.1871 -0.1876 20.0 -0.1745 -0.1745 -0.1747 -0.1751
Recommend
More recommend