anna karlin most slides by alex tsun poisson rv example
play

Anna Karlin Most Slides by Alex Tsun Poisson RV Example The Zoo of - PowerPoint PPT Presentation

Anna Karlin Most Slides by Alex Tsun Poisson RV Example The Zoo of Discrete RVs The Negative Binomial RV The Bernoulli RV The Hypergeometric RV The Binomial RV probability students The Geometric RV Definition of The


  1. Anna Karlin Most Slides by Alex Tsun

  2. Poisson RV Example

  3. The Zoo of Discrete RV’s ● The Negative Binomial RV ● The Bernoulli RV ● The Hypergeometric RV ● The Binomial RV probability students ● The Geometric RV Definition of ● The Uniform RV Expectation ● The Poisson RV

  4. random variables Important Examples: Uniform(a,b): Bernoulli(p): P(X = 1) = p , P(X = 0) = 1-p μ = p, σ 2 = p(1-p) Binomial(n,p) μ = np, σ 2 = np(1-p) Poisson( λ ): μ = λ , σ 2 = λ Bin(n,p) ≈ Poi ( λ ) where λ = np fixed, n → ∞ (and so p= λ /n → 0 ) Geometric(p) P(X = k) = (1-p) k-1 p μ = 1/p, σ 2 = (1-p)/p 2 µ E EN 62 3 ! X Var X

  5. Probability 4.1 Continuous random Variables Basics Anna Karlin Most Slides by Alex Tsun

  6. Agenda ● Probability Density Functions (PDFs) ● Cumulative Distribution Functions (CDFs) ● From Discrete to Continuous

  7. X IX 952 Discrete with riv range Pmt CDTE Fxwt Pr PrlX w ww.no p lw Praewnerraff Kw lw 30 p CITY.ly inIeaYTngaom EINE I to 0 FxlwtfyPxT pxlaf txlkl fxlk.it Sitt v EW is p given Ext k what

  8. pick Fx Kt a µ EH b Px s.t.tt PrlXEk t prfxek FxCK4 FxCk D 4pxCH don't know d I rn to represent cont want suppose drew Sm Os random uniform tell OP I I In T Diseapprox r brown CDF discrete dish f B 0 WEENIE aee ee L'T w In O W O in E o.o Yei a at 11 11141 In 5 KKE I w

  9. W eat n I Ia L pyo 1 I w h 0 p lw i n as makes sense pint longer no T density introduce ghpmffP probability font analogue pxkt fIIY txIIFXHII.hx.PT

  10. Fx f v v CDF Intuition 1 1

  11. CDF Intuition 1 1 o AM H 1 1

  12. at FX f wI v CDF Intuition 0 eat 1 1 T i 1 1

  13. prob density fn 12 1 730 I Ep a pdf XEl Properties of PDF Intuition

  14. PDF Intuition

  15. Delong what pdf must satisfy PDF Intuition a or

  16. PDF Intuition e

  17. PDF Intuition t

  18. PDF Intuition B f g PrfX proportional g

  19. PDF Intuition D

  20. Probability Density Functions (PDFs) a Pra Xeb I Pr F fb Fila

  21. Random Picture probability students Definition of Expectation

  22. CDF Intuition 1 1

  23. Iffy G d v CDF Intuition D 1 1 r a 1 1

  24. w f Hdv t CDF Intuition 1 1 1 1 w

  25. CDF Intuition 1 1 1 1

  26. CDF Intuition 1 e 1

  27. CDF Intuition 1 1

  28. CDF Intuition 1 a 1

  29. CDF Intuition 1 1

  30. CDF Intuition 1 a 1 2

  31. CDF Intuition 1 1

  32. Cumulative Distribution Functions (CDFs)

  33. OIL uniform X Model m whatisc se a c b 2y i 424 I I don't know d 4 2 0 vs f H Creve's Eo v z t f w dv I Cvf Ef Cdv O 3 E 2

  34. F t E a b EEE v s z III a v z I don't know d

  35. L f Cx fx x t From Discrete to Continuous f Cx Fx x EHEI fx dx EH rjP I

  36. Probability 4.2 Zoo of Continuous RVs

  37. Agenda ● The (Continuous) Uniform RV ● The Exponential RV ● Memorylessness

  38. The (Continuous) Uniform RV TTT pdf T fbx.es dxEEafaba ELXKIxfxtxldx b2 atVarfX ECX7 EIT 2lb a ax ET t x x beg

  39. The Uniform (Continuous) RV he f

Recommend


More recommend