Anna Karlin Most Slides by Alex Tsun
Poisson RV Example
The Zoo of Discrete RV’s ● The Negative Binomial RV ● The Bernoulli RV ● The Hypergeometric RV ● The Binomial RV probability students ● The Geometric RV Definition of ● The Uniform RV Expectation ● The Poisson RV
random variables Important Examples: Uniform(a,b): Bernoulli(p): P(X = 1) = p , P(X = 0) = 1-p μ = p, σ 2 = p(1-p) Binomial(n,p) μ = np, σ 2 = np(1-p) Poisson( λ ): μ = λ , σ 2 = λ Bin(n,p) ≈ Poi ( λ ) where λ = np fixed, n → ∞ (and so p= λ /n → 0 ) Geometric(p) P(X = k) = (1-p) k-1 p μ = 1/p, σ 2 = (1-p)/p 2 µ E EN 62 3 ! X Var X
Probability 4.1 Continuous random Variables Basics Anna Karlin Most Slides by Alex Tsun
Agenda ● Probability Density Functions (PDFs) ● Cumulative Distribution Functions (CDFs) ● From Discrete to Continuous
X IX 952 Discrete with riv range Pmt CDTE Fxwt Pr PrlX w ww.no p lw Praewnerraff Kw lw 30 p CITY.ly inIeaYTngaom EINE I to 0 FxlwtfyPxT pxlaf txlkl fxlk.it Sitt v EW is p given Ext k what
pick Fx Kt a µ EH b Px s.t.tt PrlXEk t prfxek FxCK4 FxCk D 4pxCH don't know d I rn to represent cont want suppose drew Sm Os random uniform tell OP I I In T Diseapprox r brown CDF discrete dish f B 0 WEENIE aee ee L'T w In O W O in E o.o Yei a at 11 11141 In 5 KKE I w
W eat n I Ia L pyo 1 I w h 0 p lw i n as makes sense pint longer no T density introduce ghpmffP probability font analogue pxkt fIIY txIIFXHII.hx.PT
Fx f v v CDF Intuition 1 1
CDF Intuition 1 1 o AM H 1 1
at FX f wI v CDF Intuition 0 eat 1 1 T i 1 1
prob density fn 12 1 730 I Ep a pdf XEl Properties of PDF Intuition
PDF Intuition
Delong what pdf must satisfy PDF Intuition a or
PDF Intuition e
PDF Intuition t
PDF Intuition B f g PrfX proportional g
PDF Intuition D
Probability Density Functions (PDFs) a Pra Xeb I Pr F fb Fila
Random Picture probability students Definition of Expectation
CDF Intuition 1 1
Iffy G d v CDF Intuition D 1 1 r a 1 1
w f Hdv t CDF Intuition 1 1 1 1 w
CDF Intuition 1 1 1 1
CDF Intuition 1 e 1
CDF Intuition 1 1
CDF Intuition 1 a 1
CDF Intuition 1 1
CDF Intuition 1 a 1 2
CDF Intuition 1 1
Cumulative Distribution Functions (CDFs)
OIL uniform X Model m whatisc se a c b 2y i 424 I I don't know d 4 2 0 vs f H Creve's Eo v z t f w dv I Cvf Ef Cdv O 3 E 2
F t E a b EEE v s z III a v z I don't know d
L f Cx fx x t From Discrete to Continuous f Cx Fx x EHEI fx dx EH rjP I
Probability 4.2 Zoo of Continuous RVs
Agenda ● The (Continuous) Uniform RV ● The Exponential RV ● Memorylessness
The (Continuous) Uniform RV TTT pdf T fbx.es dxEEafaba ELXKIxfxtxldx b2 atVarfX ECX7 EIT 2lb a ax ET t x x beg
The Uniform (Continuous) RV he f
Recommend
More recommend