3 2 more on expectation 3 3 variance and standard
play

3.2 More on Expectation 3.3 Variance and Standard Deviation Anna - PowerPoint PPT Presentation

3.2 More on Expectation 3.3 Variance and Standard Deviation Anna Karlin Most Slides by Alex Tsun Agenda Linearity of Expectation (LoE) Law of the Unconscious Statistician (Lotus) Variance Independence of random variables


  1. 3.2 More on Expectation 3.3 Variance and Standard Deviation Anna Karlin Most Slides by Alex Tsun

  2. Agenda ● Linearity of Expectation (LoE) ● Law of the Unconscious Statistician (Lotus) ● Variance ● Independence of random variables ● Properties of variance

  3. Linearity of Expectation (LoE)

  4. <latexit sha1_base64="CxIQlQmNr6yr2qKRf1V6LcRsARQ=">ACKHicbVBdS8MwFE39nPOr6qMvwSGsCKOdgr6IQxF8nOC2wlZKmVbWJqWJBVG2c/xb/i4gie/WXmHZ7mJsXEs4951ySe4KYUalse2KsrK6tb2wWtorbO7t7+bBYVNGicCkgSMWCTdAkjDKSUNRxYgbC4LCgJFWMLzL9NYzEZJG/EmNYuKFqM9pj2KkNOWbN/dl13fgGXT9qr47rBspmbfcgte5aOk2A1VozTsyilu+WbIrdl5wGTgzUAKzqvmR6cb4SQkXGpGw7dqy8FAlFMSPjYieRJEZ4iPqkrSFHIZFemi86hqea6cJeJPThCubs/ESKQilHYaCdIVIDuahl5H9aO1G9Ky+lPE4U4Xj6UC9hUEUwSw12qSBYsZEGCAuq/wrxAmElc62qENwFldeBs1qxTmvVB8vSrXbWRwFcAxOQBk4BLUwAOogwbA4AW8gU/wZbwa78a3MZlaV4zZzBH4U8bPL02Kn2w=</latexit> Corollary: linearity for sum of lots of r.v.s E ( X 1 + X 2 + . . . + X n ) = E ( X 1 ) + E ( X 2 ) + . . . + E ( X n ) Proof by induction!

  5. Indicator random variable ● For any event A, can define the indicator random variable for A

  6. Computing complicated expectations ● Often boils down to finding the right way to decompose the random variable into simple random variables (often indicator random variables) and then applying linearity of expectation.

  7. <latexit sha1_base64="wXxnJWBAdvMNeJ+5V5smUWXQjCg=">AB/HicbZDLSsNAFIYn9VbrLdqlm8EipJuSVEGXRSm4rGAv0IYymU7SoZNJmJkIdRXceNCEbc+iDvfxkmbhb+MPDxn3M4Z34vZlQq2/42ShubW9s75d3K3v7B4ZF5fNKTUSIw6eKIRWLgIUkY5aSrqGJkEAuCQo+Rvje7zev9RyIkjfiDSmPihijg1KcYKW2NzWrbCqxBvQ5HnMDAauc8Nmt2w14IroNTQA0U6ozNr9EkwklIuMIMSTl07Fi5GRKYkbmlVEiSYzwDAVkqJGjkEg3Wxw/h+famUA/EvpxBRfu74kMhVKmoac7Q6SmcrWm/Vhonyr92M8jhRhOPlIj9hUEUwTwJOqCBYsVQDwoLqWyGeIoGw0nlVdAjO6pfXodsOBeN5v1lrXVTxFEGp+AMWMABV6AF7kAHdAEGKXgGr+DNeDJejHfjY9laMoqZKvgj4/MHmqSKA=</latexit> <latexit sha1_base64="q4MXmMcea5sthUJtvutns/oRyTU=">ACPnicbVC7SgNBFJ317fqKWtoMBsXGuBsFbYSgjaWCiYFsCLOTm2RwdnaZuauGJV9m4zfYWdpYKGJr6STZwteBgcM59zH3hIkUBj3vyZmYnJqemZ2bdxcWl5ZXCqtrNROnmkOVxzLW9ZAZkEJBFQVKqCcaWBRKuAqvT4f+1Q1oI2J1if0EmhHrKtERnKGVWoVqnR7TISuUBm3c8yA+nSbBgh3mN0K7NFExyG16l45CNzdofm/6wag2vmMVqHolbwR6F/i56RIcpy3Co9BO+ZpBAq5ZMY0fC/BZsY0Ci5h4AapgYTxa9aFhqWKRWCa2ej8Ad2ySpt2Ym2fQjpSv3dkLDKmH4W2MmLYM7+9ofif10ixc9TMhEpSBMXHizqpBjTYZa0LTRwlH1LGNfC/pXyHtOMo03ctSH4v0/+S2rlkr9fKl8cFCsneRxzZINskh3ik0NSIWfknFQJ/fkmbySN+fBeXHenY9x6YST96yTH3A+vwA7u6wz</latexit> Linearity is special! In general E ( g ( X )) 6 = g ( E ( X )) ● ( with prob 1 / 2 1 X = with prob 1 / 2 − 1

  8. <latexit sha1_base64="JZCdgKcKqIRgefCLdY3tgGsxMbU=">AB73icbVBNS8NAEJ3Ur1q/qh69LBahvZSkCnosiuCxgm0DbSib7aZdutnE3Y1Qv+EFw+KePXvePfuE1z0NYHA4/3ZpiZ58ecKW3b31ZhbX1jc6u4XdrZ3ds/KB8edVSUSELbJOKRdH2sKGeCtjXTnLqxpDj0Oe36k5u532iUrFIPOhpTL0QjwQLGMHaSO5tdVR1azU0KFfsup0BrRInJxXI0RqUv/rDiCQhFZpwrFTPsWPtpVhqRjidlfqJojEmEzyiPUMFDqny0uzeGTozyhAFkTQlNMrU3xMpDpWahr7pDLEeq2VvLv7n9RIdXHkpE3GiqSCLRUHCkY7Q/Hk0ZJISzaeGYCKZuRWRMZaYaBNRyYTgL+8SjqNunNeb9xfVJrXeRxFOIFTqIDl9CEO2hBGwhweIZXeLMerRfr3fpYtBasfOY/sD6/AHrS46U</latexit> <latexit sha1_base64="wXxnJWBAdvMNeJ+5V5smUWXQjCg=">AB/HicbZDLSsNAFIYn9VbrLdqlm8EipJuSVEGXRSm4rGAv0IYymU7SoZNJmJkIdRXceNCEbc+iDvfxkmbhb+MPDxn3M4Z34vZlQq2/42ShubW9s75d3K3v7B4ZF5fNKTUSIw6eKIRWLgIUkY5aSrqGJkEAuCQo+Rvje7zev9RyIkjfiDSmPihijg1KcYKW2NzWrbCqxBvQ5HnMDAauc8Nmt2w14IroNTQA0U6ozNr9EkwklIuMIMSTl07Fi5GRKYkbmlVEiSYzwDAVkqJGjkEg3Wxw/h+famUA/EvpxBRfu74kMhVKmoac7Q6SmcrWm/Vhonyr92M8jhRhOPlIj9hUEUwTwJOqCBYsVQDwoLqWyGeIoGw0nlVdAjO6pfXodsOBeN5v1lrXVTxFEGp+AMWMABV6AF7kAHdAEGKXgGr+DNeDJejHfjY9laMoqZKvgj4/MHmqSKA=</latexit> Linearity is special! E ( g ( X )) 6 = g ( E ( X )) ● In general E ( g ( X )) ● How DO we compute ?

  9. Homeworks of 3 students returned randomly ● Each permutation equally likely ● X: # people who get their own homework What is E(X 2 mod 2)? ● Prob Outcome w X(w) 1/6 1 2 3 3 1/6 1 3 2 1 1/6 2 1 3 1 1/6 2 3 1 0 1/6 3 1 2 0 1/6 3 2 1 1

  10. Law of the Unconscious Statistician (Lotus)

  11. Probability Alex Tsun Joshua Fan

  12. Variance (Intuition) Which game would you rather play? We flip a fair coin. Game 1: ● If heads, You pay me $1. ● If Tails, I pay you $1. Game 2: ● If Heads, you pay me $1000. ● If Tails, I pay you $1000.

  13. Variance (Intuition) how far is a random variable from its mean, on average?

  14. Variance (Intuition) how far is a random variable from its mean, on average?

  15. Variance (Intuition) how far is a random variable from its mean, on average?

  16. Variance and Standard Deviation (SD)

  17. Variance and Standard Deviation (SD) More Useful

  18. Variance and Standard Deviation (SD) More Useful

  19. Variance (Property)

  20. Variance (Property)

  21. Variance (Example) LOTUS

  22. Variance Which game would you rather play? We flip a fair coin. Game 1: ● If heads, You pay me $1. ● If Tails, I pay you $1. Game 2: ● If Heads, you pay me $1000. ● If Tails, I pay you $1000.

  23. <latexit sha1_base64="VmZ/esG7WUeB9usxfGQnMnkcNGU=">AB8HicbVBNSwMxEJ34WetX1aOXYBE8ld0q6EUoevFYwX5Iu5Rsm1Dk+ySZIWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5YSK4sZ73jVZW19Y3Ngtbxe2d3b390sFh08SpqxBYxHrdkgME1yxhuVWsHaiGZGhYK1wdDv1W09MGx6rBztOWCDJQPGIU2Kd9NjG17ibSOz3SmWv4s2Al4mfkzLkqPdKX91+TFPJlKWCGNPxvcQGdGWU8EmxW5qWELoiAxYx1FJDNBNjt4gk+d0sdRrF0pi2fq74mMSGPGMnSdktihWfSm4n9eJ7XRVZBxlaSWKTpfFKUC2xhPv8d9rhm1YuwIoZq7WzEdEk2odRkVXQj+4svLpFmt+OeV6v1FuXaTx1GAYziBM/DhEmpwB3VoAUJz/AKb0ijF/SOPuatKyifOYI/QJ8/+p+PNw=</latexit> <latexit sha1_base64="LJVMunBLohKIaosDxqf3pYp1UQ=">AB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0JPYL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m586JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZIalGyxKEwFMTGZ/U0GXCEzYmIJZYrbWwkbUWZsemUbAje8surpFWrehfV2v1lpX6Tx1GEziFc/DgCupwBw1oAoMhPMrvDnCeXHenY9Fa8HJZ47hD5zPH0fxjcs=</latexit> In general, var(X+Y) Var(X) + Var(Y) 6 = Example 1: ● each with prob ½ X = ± 1 ● E(X)= ? Var(X) = ? ● How about Y = -X Example 2: What is Var(X+X)?

  24. Variance in pictures

  25. Random Picture probability students Definition of Expectation

  26. Random variables and independence Random variable X and event E are independent if the event E is independent of the event {X=x} (for any fixed x), i.e. ∀ x P(X = x and E) = P(X=x) • P(E) Two random variables X and Y are independent if the events {X=x} and {Y=y} are independent for any fixed x, y, i.e. ∀ x, y P(X = x and Y=y) = P(X=x) • P(Y=y) Intuition as before: knowing X doesn’t help you guess Y or E and vice versa.

  27. Example Random variable X and event E are independent if the event E is independent of the event {X=x} (for any fixed x), i.e. ∀ x P(X = x and E) = P(X=x) • P(E) Example: Let X be number of heads in n independent coin flips. Let E be the event that the number of heads is even.

  28. Example Two random variables X and Y are independent if the events {X=x} and {Y=y} are independent (for any fixed x, y), i.e. ∀ x, y P(X = x and Y=y) = P(X=x) • P(Y=y) Example: Let X be number of heads in first n of 2n independent coin flips, Y be number in the last n flips, and let Z be the total.

  29. Example continued r.v.s and independence Example: Let X be number of heads in first n of 2n independent coin flips, Y be number in the last n flips, and let Z be the total.

  30. Important facts about independent random variables Theorem: If X & Y are independent, then E[X•Y] = E[X]•E[Y] Theorem: If X and Y are independent, then Var[X + Y] = Var[X] + Var[Y] Corollary: If X 1 + X 2 + … + X n are mutually independent then Var[X 1 + X 2 + … + X n ] = Var[X 1 ] + Var [X 2 ] + … + Var[X n ]

  31. E[XY] for independent random variables ● Theorem: If X & Y are independent, then E[X•Y] = products of independent r.v.s E[X]•E[Y] ● Proof: independence Note: NOT true in general; see earlier example E[X 2 ] ≠ E[X] 2 ! X

  32. Variance of a sum of independent r.v.s variance of independent r.v.s is additive Theorem: If X and Y are independent, then ( Bienaymé, 1853) Var[X + Y] = Var[X] + Var[Y] Proof: ! X

  33. Independent vs dependent r.v.s ● Dependent r.v.s can reinforce/cancel/correlate in arbitrary ways. ● Independent r.v.s are, well, independent. Example: Z = X 1 + X 2 +…. + X n X i is indicator r.v. with probability 1/2 of being 1. versus W = n X 1

  34. Probability Alex Tsun Joshua Fan

Recommend


More recommend