and 611 for small integer factorization sieving
play

and 611 + for small : Integer factorization Sieving 1 612 2 2 - PowerPoint PPT Presentation

and 611 + for small : Integer factorization Sieving 1 612 2 2 3 3 D. J. Bernstein 2 2 613 3 3 614 2 4 2 2 615 3 5 Thanks to: 5 5 616 2 2 2 7 6 2 3 617 University of Illinois at Chicago 7 7 618 2 3 8 2 2 2


  1. � and 611 + � for small � : Integer factorization Sieving 1 612 2 2 3 3 D. J. Bernstein 2 2 613 3 3 614 2 4 2 2 615 3 5 Thanks to: 5 5 616 2 2 2 7 6 2 3 617 University of Illinois at Chicago 7 7 618 2 3 8 2 2 2 619 NSF DMS–0140542 9 3 3 620 2 2 5 10 2 5 621 3 3 3 Alfred P. Sloan Foundation 11 622 2 12 2 2 3 623 7 13 624 2 2 2 2 3 14 2 7 625 5 5 5 5 15 3 5 626 2 16 2 2 2 2 627 3 17 628 2 2 18 2 3 3 629 19 630 2 3 3 5 7 20 2 2 5 631 etc.

  2. � ✂ ✁ � � and 611 + � for small � : rization Sieving Have complete facto � (611 + � ) for some 1 612 2 2 3 3 2 2 613 � 625 = 2 1 3 0 5 4 7 3 3 614 2 14 4 2 2 615 3 5 � 675 = 2 6 3 3 5 2 7 5 5 616 2 2 2 7 64 6 2 3 617 Illinois at Chicago � 686 = 2 1 3 1 5 2 7 7 7 618 2 3 75 8 2 2 2 619 DMS–0140542 9 3 3 620 2 2 5 10 2 5 621 3 3 3 Foundation 14 � 64 � 75 � 625 � 675 11 622 2 = 2 8 3 4 5 8 7 4 = (2 4 3 12 2 2 3 623 7 13 624 2 2 2 2 3 14 2 7 625 5 5 5 5 15 3 5 626 2 gcd 14 � 64 � 75 16 2 2 2 2 627 3 17 628 2 2 = 47. 18 2 3 3 629 19 630 2 3 3 5 7 611 = 47 � 13. 20 2 2 5 631 etc.

  3. ✁ � and 611 + � for small � : Sieving Have complete factorization of � (611 + � ) for some � ’s. 1 612 2 2 3 3 2 2 613 � 625 = 2 1 3 0 5 4 7 1 . 3 3 614 2 14 4 2 2 615 3 5 � 675 = 2 6 3 3 5 2 7 0 . 5 5 616 2 2 2 7 64 6 2 3 617 � 686 = 2 1 3 1 5 2 7 3 . 7 7 618 2 3 75 8 2 2 2 619 9 3 3 620 2 2 5 10 2 5 621 3 3 3 14 � 64 � 75 � 625 � 675 � 686 11 622 2 = 2 8 3 4 5 8 7 4 = (2 4 3 2 5 4 7 2 ) 2 . 12 2 2 3 623 7 13 624 2 2 2 2 3 14 2 7 625 5 5 5 5 2 4 3 2 5 4 7 2 ✂ 611 15 3 5 626 2 gcd 14 � 64 � 75 16 2 2 2 2 627 3 17 628 2 2 = 47. 18 2 3 3 629 19 630 2 3 3 5 7 611 = 47 � 13. 20 2 2 5 631 etc.

  4. � ✂ � � � � ✁ � � ✂ ✁ � ✂ ✁ � ✁ ✁ � � � � � for small � : 611 + Have complete factorization of Given and parameter � (611 + � ) for some � ’s. 2 2 3 3 1. Use powers of p � and � fo � 625 = 2 1 3 0 5 4 7 1 . 2 14 sieve + 3 5 � 675 = 2 6 3 3 5 2 7 0 . 2 2 2 7 64 2. Look for nonempt � 686 = 2 1 3 1 5 2 7 3 . 2 3 75 � ( � ) completely with + 2 2 5 � ( 3 3 3 14 � 64 � 75 � 625 � 675 � 686 and with + 2 = 2 8 3 4 5 8 7 4 = (2 4 3 2 5 4 7 2 ) 2 . 7 2 2 2 2 3 3. Compute gcd 5 5 5 5 2 4 3 2 5 4 7 2 ✂ 611 2 gcd 14 � 64 � 75 where = 3 2 2 = 47. 2 3 3 5 7 611 = 47 � 13.

  5. � � ✁ � � � ✁ � ✂ ✂ ✂ ✁ � ✁ ✁ � Have complete factorization of Given and parameter : � (611 + � ) for some � ’s. 1. Use powers of primes to � and � for 1 � 625 = 2 1 3 0 5 4 7 1 . 2 . 14 sieve + � 675 = 2 6 3 3 5 2 7 0 . 64 � ’s 2. Look for nonempty set of � 686 = 2 1 3 1 5 2 7 3 . 75 � ( � ) completely factored with + � ( � ) square. 14 � 64 � 75 � 625 � 675 � 686 and with + = 2 8 3 4 5 8 7 4 = (2 4 3 2 5 4 7 2 ) 2 . 3. Compute gcd 2 4 3 2 5 4 7 2 ✂ 611 gcd 14 � 64 � 75 � ( � ). where = + = 47. 611 = 47 � 13.

  6. ✂ ✁ ✁ � � � ✁ � ✁ � � � � � � � � � � ✂ � � � ✂ ✁ � � factorization of Given and parameter : This is the Q sieve � ’s. some 1. Use powers of primes to Same principles: � and � for 1 4 7 1 . 2 . sieve + Continued-fraction 2 7 0 . (Lehmer, Powers, � ’s 2. Look for nonempty set of 2 7 3 . Brillhart, Morrison). � ( � ) completely factored with + Linear sieve (Schro � ( � ) square. � 675 � 686 and with + Quadratic sieve (P 4 3 2 5 4 7 2 ) 2 . Number-field sieve 3. Compute gcd 2 4 3 2 5 4 7 2 ✂ 611 � ( � ). (Pollard, Buhler, Lenstra, where = + Pomerance, Adleman).

  7. � � ✁ � � ✂ ✂ � ✂ � � ✁ � ✁ ✁ Given and parameter : This is the Q sieve . 1. Use powers of primes to Same principles: � and � for 1 2 . sieve + Continued-fraction method (Lehmer, Powers, � ’s 2. Look for nonempty set of Brillhart, Morrison). � ( � ) completely factored with + Linear sieve (Schroeppel). � ( � ) square. and with + Quadratic sieve (Pomerance). Number-field sieve 3. Compute gcd � ( � ). (Pollard, Buhler, Lenstra, where = + Pomerance, Adleman).

  8. � ✂ ✂ � � � ✂ � � � � � � ✂ � � � � � � ✂ � � � � ✂ � � � ✂ ✂ � � � � ✂ � � � ✂ ✂ ✂ � � � ✁ ✁ � ✁ ✂ ✂ � � ✂ � � � ✁ � � � rameter : This is the Q sieve . Sieving speed of primes to Same principles: Handle sieving in � for 1 2 . sieve + 1 Continued-fraction method (Lehmer, Powers, sieve + + 1 � ’s nonempty set of Brillhart, Morrison). sieve + 2 + 1 completely factored Linear sieve (Schroeppel). etc. � ) square. + Quadratic sieve (Pomerance). Sieving + 1 + Number-field sieve using primes � ( � ). (Pollard, Buhler, Lenstra, + means finding, for Pomerance, Adleman). + 1 + 2 which ’s divide

  9. � � � � � ✂ � ✂ � � � ✂ � ✂ � � � ✂ ✂ � ✂ � � � � ✂ � � � ✂ ✂ � � � � � ✂ ✂ � � � This is the Q sieve . Sieving speed Same principles: Handle sieving in pieces: sieve + 1 + ; Continued-fraction method (Lehmer, Powers, sieve + + 1 + 2 ; Brillhart, Morrison). sieve + 2 + 1 + 3 ; Linear sieve (Schroeppel). etc. Quadratic sieve (Pomerance). Sieving + 1 + 2 + Number-field sieve using primes (Pollard, Buhler, Lenstra, means finding, for each Pomerance, Adleman). + 1 + 2 + , � . which ’s divide +

  10. ✂ � � ✂ � � � ✂ � � ✂ � � ✂ � � ✂ � � � � ✂ ✂ � � ✂ � ✂ � � ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ � ✂ � � ✂ � � � ✂ � � � � � ✂ � sieve . Sieving speed Consider all pairs ( � is a multiple where + Handle sieving in pieces: sieve + 1 + ; Easy to generate pairs Continued-fraction method ers, sieve + + 1 + 2 ; sorted by second comp ✂ 2), (614 ✂ 2), (616 rrison). sieve + 2 + 1 + 3 ; (612 ✂ 2), (612 ✂ 3), (615 (Schroeppel). etc. (620 ✂ 5), (620 ✂ 5), (616 (Pomerance). (615 Sieving + 1 + 2 + sieve using primes Sieving means listing Buhler, Lenstra, means finding, for each sorted by first comp Adleman). ✂ 2), (612 ✂ 3), (614 + 1 + 2 + , (612 � . ✂ 3), (615 ✂ 5), (616 which ’s divide + (615 ✂ 2), (618 ✂ 3), (620 (618

  11. � ✂ � ✂ � ✂ ✂ � � � � � � � � ✂ � � ✂ � � � ✂ � ✂ � ✂ � � ✂ � � � � � � � � � ✂ � ✂ � � ✂ Sieving speed Consider all pairs ( + ) � is a multiple of where + . Handle sieving in pieces: sieve + 1 + ; Easy to generate pairs sieve + + 1 + 2 ; sorted by second component: ✂ 2), (614 ✂ 2), (616 ✂ 2), (618 ✂ 2), sieve + 2 + 1 + 3 ; (612 ✂ 2), (612 ✂ 3), (615 ✂ 3), (618 ✂ 3), etc. (620 ✂ 5), (620 ✂ 5), (616 ✂ 7). (615 Sieving + 1 + 2 + using primes Sieving means listing pairs means finding, for each sorted by first component: ✂ 2), (612 ✂ 3), (614 ✂ 2), + 1 + 2 + , (612 � . ✂ 3), (615 ✂ 5), (616 ✂ 2), (616 ✂ 7), which ’s divide + (615 ✂ 2), (618 ✂ 3), (620 ✂ 2), (620 ✂ 5). (618

  12. � � � ✁ � � � ✂ � ✂ ✂ � � � ✂ � � � � � � ✂ � � ✂ ✂ � � � � ✂ ✂ � ✂ � � ✂ ✂ � � � ✂ � � � ✂ � � � ✂ � � � � ✂ � � ✂ � � � � ✂ � � � ✂ � � � (1) 1+ Consider all pairs ( + ) There are � is a multiple of where + . involving + 1 pieces: + ; Easy to generate pairs Sieving + 1 + � (1) seconds 1+ + 2 ; sorted by second component: takes ✂ 2), (614 ✂ 2), (616 ✂ 2), (618 ✂ 2), 1 + 3 ; (612 on RAM costing ✂ 2), (612 ✂ 3), (615 ✂ 3), (618 ✂ 3), (620 2-dimensional mesh ✂ 5), (620 ✂ 5), (616 ✂ 7). (615 0 + 2 + is much faster: Sieving means listing pairs on machine costing for each sorted by first component: Can do even better: ✂ 2), (612 ✂ 3), (614 ✂ 2), 2 + , (612 on machine costing � . ✂ 3), (615 ✂ 5), (616 ✂ 2), (616 ✂ 7), + (615 using “elliptic-curve ✂ 2), (618 ✂ 3), (620 ✂ 2), (620 ✂ 5). (618

Recommend


More recommend