a combinatorial proof of the cyclic sieving phenomenon
play

A Combinatorial Proof of the Cyclic Sieving Phenomenon for Faces of - PowerPoint PPT Presentation

A Combinatorial Proof of the Cyclic Sieving Phenomenon for Faces of Coxeterhedra Tung-Shan Fu Pingtung Institute of Commerce Based on joint work with S.-P. Eu and Y.-J. Pan Cyclic sieving phenomenon X : a finite set X ( q ) : a


  1. A Combinatorial Proof of the Cyclic Sieving Phenomenon for Faces of Coxeterhedra Tung-Shan Fu Pingtung Institute of Commerce Based on joint work with S.-P. Eu and Y.-J. Pan

  2. Cyclic sieving phenomenon • X : a finite set • X ( q ) : a polynomial in Z [ q ] ( X (1) = | X | ) • C : a finite cyclic group acting on X

  3. Cyclic sieving phenomenon • X : a finite set • X ( q ) : a polynomial in Z [ q ] ( X (1) = | X | ) • C : a finite cyclic group acting on X If c ∈ C , we let X c = { x ∈ X : c ( x ) = x } and o ( c ) = order of c in C.

  4. Cyclic sieving phenomenon • X : a finite set • X ( q ) : a polynomial in Z [ q ] ( X (1) = | X | ) • C : a finite cyclic group acting on X If c ∈ C , we let X c = { x ∈ X : c ( x ) = x } and o ( c ) = order of c in C. We also let ω d be the primitive d th root of unity.

  5. Cyclic sieving phenomenon • X : a finite set • X ( q ) : a polynomial in Z [ q ] ( X (1) = | X | ) • C : a finite cyclic group acting on X If c ∈ C , we let X c = { x ∈ X : c ( x ) = x } and o ( c ) = order of c in C. We also let ω d be the primitive d th root of unity. Definition (Reiner-Stanton-White 2004) The triple ( X, X ( q ) , C ) exhibits the cyclic sieving phenomenon (CSP) if, for every c ∈ C , we have | X c | = X ( ω o ( c ) ) .

  6. Cyclic sieving phenomenon • X : a finite set • X ( q ) : a polynomial in Z [ q ] ( X (1) = | X | ) • C : a finite cyclic group acting on X If c ∈ C , we let X c = { x ∈ X : c ( x ) = x } and o ( c ) = order of c in C. We also let ω d be the primitive d th root of unity. Definition (Reiner-Stanton-White 2004) The triple ( X, X ( q ) , C ) exhibits the cyclic sieving phenomenon (CSP) if, for every c ∈ C , we have | X c | = X ( ω o ( c ) ) . Note. The case | C | = 2 was first studied by Stembridge and called the “ q = − 1 phenomenon”.

  7. Example Let [ n ] = { 1 , . . ., n } and � [ n ] � X = = { T ⊆ [ n ] : | T | = k } . k

  8. Example Let [ n ] = { 1 , . . ., n } and � [ n ] � X = = { T ⊆ [ n ] : | T | = k } . k Let C = � (1 , . . ., n ) � . Now c ∈ C acts on T = { t 1 , . . . , t k } by c ( T ) = { c ( t 1 ) , . . . , c ( t k ) } .

  9. Example Let [ n ] = { 1 , . . ., n } and � [ n ] � X = = { T ⊆ [ n ] : | T | = k } . k Let C = � (1 , . . ., n ) � . Now c ∈ C acts on T = { t 1 , . . . , t k } by c ( T ) = { c ( t 1 ) , . . . , c ( t k ) } . For example, consider n = 4 and k = 2 . We have X = { 12 , 13 , 14 , 23 , 24 , 34 } C = { e, (1 , 2 , 3 , 4) , (1 , 3)(2 , 4) , (1 , 4 , 3 , 2) } .

  10. Example Let [ n ] = { 1 , . . ., n } and � [ n ] � X = = { T ⊆ [ n ] : | T | = k } . k Let C = � (1 , . . ., n ) � . Now c ∈ C acts on T = { t 1 , . . . , t k } by c ( T ) = { c ( t 1 ) , . . . , c ( t k ) } . For example, consider n = 4 and k = 2 . We have X = { 12 , 13 , 14 , 23 , 24 , 34 } C = { e, (1 , 2 , 3 , 4) , (1 , 3)(2 , 4) , (1 , 4 , 3 , 2) } . For c = (1 , 3)(2 , 4) , we have c (12) = 34 , c (13) = 13 , c (14) = 23 c (34) = 12 , c (24) = 24 , c (23) = 14

  11. A q -polynomial for X ( q ) Let [ n ] q = 1 + q + · · · + q n − 1 and [ n ] q ! = [1] q [2] q · · · [ n ] q .

  12. A q -polynomial for X ( q ) Let [ n ] q = 1 + q + · · · + q n − 1 and [ n ] q ! = [1] q [2] q · · · [ n ] q . Define the Gaussian coefficients by � n � [ n ] q ! = . k [ k ] q [ n − k ] q q

  13. A q -polynomial for X ( q ) Let [ n ] q = 1 + q + · · · + q n − 1 and [ n ] q ! = [1] q [2] q · · · [ n ] q . Define the Gaussian coefficients by � n � [ n ] q ! = . k [ k ] q [ n − k ] q q For example, take n = 4 and k = 2 . We have � 4 � = 1 + q + 2 q 2 + q 3 + q 4 . 2 q

  14. A q -polynomial for X ( q ) Let [ n ] q = 1 + q + · · · + q n − 1 and [ n ] q ! = [1] q [2] q · · · [ n ] q . Define the Gaussian coefficients by � n � [ n ] q ! = . k [ k ] q [ n − k ] q q For example, take n = 4 and k = 2 . We have � 4 � = 1 + q + 2 q 2 + q 3 + q 4 . 2 q � 4 � ω = 1 ⇒ q =1 = 1 + 1 + 2 + 1 + 1 = 6 2 � 4 � Then ω = − 1 ⇒ q = − 1 = 1 − 1 + 2 − 1 + 1 = 2 2 � 4 � ω = − i ⇒ q = − i = 1 − i − 2 + i + 1 = 0 2

  15. An instance of CSP Theorem (Reiner-Stanton-White) The following triple exhibits the CSP �� [ n ] � � � n � , , C , k k q where C = � (1 , . . ., n ) � .

  16. An equivalent condition for CSP If X ( q ) is expanded as ( mod q n − 1) , X ( q ) ≡ a 0 + a 1 q + · · · + a n − 1 q n − 1 where n = | C | , then a k counts the number of orbits whose stabilizer-order divides k .

  17. An equivalent condition for CSP If X ( q ) is expanded as ( mod q n − 1) , X ( q ) ≡ a 0 + a 1 q + · · · + a n − 1 q n − 1 where n = | C | , then a k counts the number of orbits whose stabilizer-order divides k . In particular, • a 0 is the total number of orbits. • a 1 the number of free orbits (i.e., of size n ). • a 2 − a 1 is the number of orbits of size n 2 .

  18. Permutation polytopes The permutohedron PA n − 1 of dimension n − 1 is the the convex hull of all permutations of the vector (1 , . . . , n ) ∈ R n .

  19. Permutation polytopes The permutohedron PA n − 1 of dimension n − 1 is the the convex hull of all permutations of the vector (1 , . . . , n ) ∈ R n . (2,1,3) (1,2,3) (3,1,2) (1,3,2) (3,2,1) (2,3,1) Figure: The permutohedron PA 2

  20. An instance of CSP • X : vertex set of PA 2 • X ( q ) = [3] q ! ≡ 2 q 2 + 2 q + 2 (mod q 3 − 1 ) • C = Z / 3 Z acts on X by rotating the coordinates Then ( X, X ( q ) , C ) exhibits the CSP.

  21. An instance of CSP • X : vertex set of PA 2 • X ( q ) = [3] q ! ≡ 2 q 2 + 2 q + 2 (mod q 3 − 1 ) • C = Z / 3 Z acts on X by rotating the coordinates Then ( X, X ( q ) , C ) exhibits the CSP. • X : edge set of PA 2 q ≡ 2 q 2 + 2 q + 2 (mod q 3 − 1 ) � 3 � 3 • X ( q ) = � � q + 1 2 • C = Z / 3 Z acts on X by rotating the coordinates Then ( X, X ( q ) , C ) exhibits the CSP.

  22. The permutohedron PA 3 4123 1423 1243 4132 4213 1432 2143 2413 4231 1234 4312 1342 2431 2134 4321 1324 3142 3412 2341 3124 3421 2314 3241 3214

  23. The permutohedron PA 3 4123 1423 1243 4132 4213 1432 2143 2413 4231 1234 4312 1342 2431 2134 4321 1324 3142 3412 2341 3124 3421 2314 3241 3214 • Vertex ( σ − 1 (1) , . . ., σ − 1 ( n )) ∈ R n is labeled by σ ∈ S n . • Two vertices are adjacent iff the corresponding permutations differ by an adjacent transposition.

  24. Description for faces of PA n − 1 Theorem (Billera-Sarangarajan 1996) The face lattice of the permutohedron PA n − 1 is isomorphic to the lattice of all ordered partitions of the set { 1 , . . ., n } , ordered by refinement.

  25. Description for faces of PA n − 1 Theorem (Billera-Sarangarajan 1996) The face lattice of the permutohedron PA n − 1 is isomorphic to the lattice of all ordered partitions of the set { 1 , . . ., n } , ordered by refinement. Face numbers For 2 ≤ k ≤ n , the number of ( n − k ) -faces in PA n − 1 is given by k ! · S n,k , where S n,k is the Stirling number of the second kind.

  26. The facets of PA n − 1 4123 1423 14.23 1243 4132 4213 1432 2143 2413 24.13 12.34 1234 4231 4312 1342 2134 4321 2431 34.12 1324 13.24 3142 3412 2341 3124 3421 2314 23.14 3241 3214

  27. The facets of PA n − 1 4123 1423 14.23 1243 4132 4213 1432 2143 2413 24.13 12.34 1234 4231 4312 1342 2134 4321 2431 34.12 1324 13.24 3142 3412 2341 3124 3421 2314 23.14 3241 3214 1 . 234 12 . 34 13 . 24 123 . 4 2 . 134 23 . 14 24 . 13 234 . 1 facet-orbits: 3 . 124 34 . 12 134 . 2 4 . 123 14 . 23 124 . 3

  28. Face numbers of PA n − 1 Let x n,k = k ! S n,k . Then x n,k satisfies the following recurrence relation � 1 if k = 1 x n,k = � n − k +1 � n � x ( n − i,k − 1) if 2 ≤ k ≤ n. i =1 i

  29. Face numbers of PA n − 1 Let x n,k = k ! S n,k . Then x n,k satisfies the following recurrence relation � 1 if k = 1 x n,k = � n − k +1 � n � x ( n − i,k − 1) if 2 ≤ k ≤ n. i =1 i For example, � n � � n � � � n x n, 2 = + + · · · + , 1 2 n − 1 � n � � n � � n � x n, 3 = x n − 1 , 2 + x n − 2 , 2 + · · · + x 2 , 2 . 1 2 n − 2

  30. Face numbers of PA n − 1 Let x n,k = k ! S n,k . Then x n,k satisfies the following recurrence relation � 1 if k = 1 x n,k = � n − k +1 � n � x ( n − i,k − 1) if 2 ≤ k ≤ n. i =1 i For example, � n � � n � � � n x n, 2 = + + · · · + , 1 2 n − 1 � n � � n � � n � x n, 3 = x n − 1 , 2 + x n − 2 , 2 + · · · + x 2 , 2 . 1 2 n − 2 Note that x n, 2 is number of facets of PA n − 1 .

  31. A feasible q -polynomial for face numbers Let X ( n, k ; q ) ∈ Z [ q ] be the polynomial recursively defined by  1 if k = 1    X ( n, k ; q ) = n − k +1 � n � � X ( n − i, k − 1; q ) if 2 ≤ k ≤ n.   i  q i =1

  32. A feasible q -polynomial for face numbers Let X ( n, k ; q ) ∈ Z [ q ] be the polynomial recursively defined by  1 if k = 1    X ( n, k ; q ) = n − k +1 � n � � X ( n − i, k − 1; q ) if 2 ≤ k ≤ n.   i  q i =1 For example, take n = 4 and k = 2 , � 4 � � 4 � � 4 � X (4 , 2; q ) = + + 1 2 3 q q q 4 + 3 q + 4 q 2 + 3 q 3 (mod q 4 − 1 ) . ≡

Recommend


More recommend