An unbiased logistic regression estimating function for spatial Gibbs point processes Rasmus Waagepetersen Department of Mathematical Sciences Aalborg University joint work (in progress !) with Adrian Baddeley, Jean-Francois Coeurjolly and Ege Rubak 1 / 22
Gibbs point process and conditional intensity Point process X : random point pattern. Conditional intensity λ ( u , X ): for small region A and u ∈ A , | A | λ ( u , X ) ≈ P ( X has a point in A | X \ A ) GNZ-formula: � � f ( u , X \ u ) = E [ f ( u , X ) λ ( u , X )] d u E u ∈ X for non-negative functions f . X observed in bounded region W . 2 / 22
Parametric model λ θ ( u , X ) for conditional intensity. Strauss: λ θ ( u , X ) = βγ n R ( u , X ) , β > 0 , 0 < γ ≤ 1 u 1[ � u − v � ≤ R ]: number of neighboring points n R ( u , X ) = � v ∈ X \ within distance R from u . Log linear: λ θ ( u , X ) = exp[ θ · t ( u , X )] for some statistic t ( u , X ) E.g. (Strauss): t ( u , X ) = (1 , n R ( u , X )) 3 / 22
Pseudo-likelihood Disjoint subdivision W = ∪ m i =1 C i in ‘cells’ C i . Random indicator variables: N i = 1[ X ∩ C i � = ∅ ] (presence/absence of points in C i ). P ( N i = 1 | X \ C i ) ≈ | C i | λ θ ( u i , X ), u i ∈ C i \ X . 4 / 22
log binary pseudo-likelihood based on N i ’s takes logistic regression form: m � N i log[ | C i | λ θ ( u i , X )] + (1 − N i ) log[1 − | C i | λ θ ( u i , X )] ≈ i =1 m | C i | λ θ ( u i , X ) 1 � N i log 1 + | C i | λ θ ( u i , X ) + (1 − N i ) log 1 + | C i | λ θ ( u i , X ) i =1 Log-linear case | C i | λ θ ( u i , X ) exp( θ · t ( u i , X ) 1 + | C i | λ θ ( u i , X ) = exp( θ · t ( u i , X ) + | C i | − 1 5 / 22
binary pseudo-likelihood converges to spatial point process pseudo-likelihood ( | C i | → 0): � � log λ θ ( u , X \ u ) − λ θ ( u , X ) d u W u ∈ X with score λ ′ θ ( X \ u ) � � λ ′ λ θ ( u , X \ u ) − θ ( u , X ) d u W u ∈ X (unbiased due to GNZ formula) 6 / 22
Bias problems with pseudo-likelihood ◮ Binary pseudo-likelihood: biased due to approximation P ( N i = 1 | X \ C i ) ≈ | C i | λ θ ( u i , X ) ◮ spatial point process pseudo-likelihood: score requires numerical approximation λ ′ θ ( u , X \ u ) � � λ ′ λ θ ( u , X \ u ) − θ ( u , X ) d u ≈ W u ∈ X λ ′ θ ( u , X \ u ) � � λ ′ λ θ ( u , X \ u ) − θ ( v , X ) w ( v ) u ∈ X v ∈ Q for quadrature weights and points w ( v ) , v ∈ Q ⇒ bias. 7 / 22
Unbiased ‘logistic regression’ estimating function ′ ′ θ ( u , X \ u ) ρ ( u ) λ λ θ ( u , X ) � � s ( θ ) = λ θ ( u , X \ u )[ λ θ ( u , X \ u ) + ρ ( u )] − λ θ ( u , X ) + ρ ( u ) u ∈ X u ∈ D D : dummy point process of intensity ρ ( · ) independent of X (random ‘quadrature points’). s ( θ ) derivative of ‘logistic regression’ λ θ ( u , X \ u ) 1 � � log λ θ ( u , X \ u ) + ρ ( u ) + log λ θ ( u , X ) + ρ ( u ) u ∈ X u ∈ D 8 / 22
Advantages: ◮ unbiased by GNZ and Campbell formulae (later slide) ◮ formally logistic regression score - computation easy using glm with logistic link function. ◮ tractable asymptotic distribution of parameter estimate in the stationary case ◮ fast computation - parametric bootstrap feasible in inhomogeneous case 9 / 22
Dummy point process Should be easy to simulate and mathematically tractable. Possibilities: Stratified: + + 1. Poisson process + + 2. binomial point process (fixed number + + + of independent points) + + 3. stratified binomial point process + + + ( stratrand() in spatstat ) + + + + 10 / 22
Relation to pseudo-likelihood We can rewrite logistic regression score ′ ′ λ θ ( u , X \ u ) λ θ ( u , X \ u ) � � s ( θ ) = λ θ ( u , X \ u ) − λ θ ( u , X \ u ) + ρ ( u ) u ∈ X u ∈ ( X ∪ D ) By GNZ and Campbell: ′ λ θ ( u , X \ u ; θ ) � � ′ E λ θ ( u , X \ u ) + ρ ( u ) = E λ θ ( u , X ) d u . (1) W u ∈ ( X ∪ D ) Hence ′ θ ( u , X \ u ; θ ) λ � λ θ ( u , X \ u ) + ρ ( u ) u ∈ ( X ∪ D ) unbiased Monte Carlo approximation of last term in pseudo-likelihood score: λ ′ θ ( u , X \ u ) � � λ ′ λ θ ( u , X \ u ) − θ ( u , X ) d u W u ∈ X 11 / 22
Decomposition of logistic regression score ′ ′ ρ ( u ) λ θ ( u , X \ u ) θ ( u , X ) λ � � s ( θ ) = λ θ ( u , X \ u )[ λ θ ( u , X \ u ) + ρ ( u )] − λ θ ( u , X ) + ρ ( u ) u ∈ X u ∈ D ′ ′ ρ ( u ) λ θ ( u , X \ u ) ρ ( u ) λ θ ( u , X ) � � = λ θ ( u , X \ u )[ λ θ ( u , X \ u ) + ρ ( u )] − λ θ ( u , X ) + ρ ( u ) d u W u ∈ X ′ ′ ρ ( u ) λ θ ( u , X ) λ θ ( u , X ) � � + λ θ ( u , X ) + ρ ( u ) d u − λ θ ( u , X ) + ρ ( u ) W u ∈ D = T 1 + T 2 ′ ′ ρ ( u ) λ θ ( u , X ) θ ( u , X ) � λ � λ θ ( u , X ) + ρ ( u ) d u = E [ λ θ ( u , X ) + ρ ( u ) | X ] ⇒ E [ T 2 | X ] = 0 W u ∈ D 12 / 22
By GNZ formula for X ′ ′ θ ( u , X \ u ) ρ ( u ) λ ρ ( u ) λ θ ( u , X ) � � λ θ ( u , X \ u )[ λ θ ( u , X \ u ) + ρ ( u )] = E E λ θ ( u , X ) + ρ ( u ) d u W u ∈ X so E T 1 = ′ ′ θ ( u , X \ u ) ρ ( u ) λ ρ ( u ) λ θ ( u , X ) � � E [ λ θ ( u , X \ u )[ λ θ ( u , X \ u ) + ρ ( u )] − λ θ ( u , X ) + ρ ( u ) d u ] = 0 W u ∈ X 13 / 22
T 1 only depends on X and E [ T 2 | X ] = 0 ⇒ T 1 and T 2 uncorrelated: C ov [ T 1 , T 2 ] = EC ov [ T 1 , T 2 | X ] + C ov [ E [ T 1 | X ] , E [ T 2 | X ]] = 0 14 / 22
Approximate distribution of parameter estimate Parameter estimate ˆ θ solution of s ( θ ) = 0 First order Taylor approximation: s ( θ ) ≈ S (ˆ θ − θ ) ⇔ ˆ θ ≈ θ + S − 1 s ( θ ) where S = − E [ d d θ s ( θ )] 15 / 22
Approximate distribution of parameter estimate Parameter estimate ˆ θ solution of s ( θ ) = 0 First order Taylor approximation: s ( θ ) ≈ S (ˆ θ − θ ) ⇔ ˆ θ ≈ θ + S − 1 s ( θ ) where S = − E [ d d θ s ( θ )] Thus θ ≈ S − 1 V ar s ( θ ) S − 1 = S − 1 V ar T 1 S − 1 + S − 1 V ar T 2 S − 1 = Σ 1 +Σ 2 V ar ˆ NB: T 1 depends only on X while T 2 involves both X and D . V ar T 2 → 0 if ρ ( · ) → ∞ (dense D ) Hence Σ 2 extra variance due to D . 16 / 22
Asymptotic normality Restrict attention to stationary X and increasing observation window W . T 1 asymptotically N (0 , Σ 1 ) by CLT for Gibbs point process innovations (Coeurjolly et al. , 2012). T 2 | X asymptotically normal N (0 , Σ 2 ) by CLT for independent but not identically distributed random variables. NB: Σ 2 does not depend on X ! 17 / 22
Asymptotic normality Restrict attention to stationary X and increasing observation window W . T 1 asymptotically N (0 , Σ 1 ) by CLT for Gibbs point process innovations (Coeurjolly et al. , 2012). T 2 | X asymptotically normal N (0 , Σ 2 ) by CLT for independent but not identically distributed random variables. NB: Σ 2 does not depend on X ! Case of stratified points: m ′ ′ θ ( U i , X ) ρ ( u ) λ θ ( u , X ) λ � � T 2 = − [ λ θ ( U i , X ) + ρ ( U i ) − λ θ ( u , X ) + ρ ( u ) d u ] C i i =1 where W = ∪ i C i and U i uniform on C i . 18 / 22
Asymptotic normality Restrict attention to stationary X and increasing observation window W . T 1 asymptotically N (0 , Σ 1 ) by CLT for Gibbs point process innovations (Coeurjolly et al. , 2012). T 2 | X asymptotically normal N (0 , Σ 2 ) by CLT for independent but not identically distributed random variables. NB: Σ 2 does not depend on X ! Case of stratified points: m ′ ′ θ ( U i , X ) ρ ( u ) λ θ ( u , X ) λ � � T 2 = − [ λ θ ( U i , X ) + ρ ( U i ) − λ θ ( u , X ) + ρ ( u ) d u ] C i i =1 where W = ∪ i C i and U i uniform on C i . Conclusion ˆ θ ≈ θ + S − 1 T 1 + S − 1 T 2 ≈ N ( θ, S − 1 [Σ 1 + Σ 2 ] S − 1 ) 19 / 22
Preliminary simulation results: Strauss process Strauss process with β = 200 γ = 0 . 5 R = 0 . 05 on unit square. ◮ Compare numerically approximated pseudo-likelihood (implementation in spatstat ) with logistic regression score. ◮ variance decomposition Mean number of Poisson quadrature/dummy-points: 625 , 25000 , 10000 , 40000. 20 / 22
Bias and variance Mean and std. dev. of parameter estimates and proportion of variance due to D in % for logistic regression score. Numbers in [] are with spatstat implementation of pseudo-likelihood. β = 200 γ = 0 . 5 E ˆ sd ˆ ρ β β % E ˆ γ sd ˆ γ % 625 204.2 [168.9] 37.8 13 0.502 [0.62] 0.114 5.8 2500 203.4 [188.9] 35.9 4 0.502 [0.55] 0.112 1.5 100 2 203.4 [202.1] 35.3 1 0.502 [0.51] 0.111 0.4 200 2 203.3 [205.5] 35.2 0 0.502 [0.505] 0.111 0.1 Bias small and does not depend on intensity of dummy points for logistic regression score. Even smaller variance contributions from D if stratified dummy points used ! Bias problems with spatstat ! 21 / 22
To be done/work in progress: ◮ further simulation studies ◮ applications to data examples ◮ implementation of estimation procedure and computation of asymptotic covariance matrix in spatstat is on the way ! Thanks for your attention ! 22 / 22
Recommend
More recommend