an efficient and flexible approach to resolution proof
play

An Efficient and Flexible Approach to Resolution Proof Reduction N. - PowerPoint PPT Presentation

An Efficient and Flexible Approach to Resolution Proof Reduction N. Sharygina Formal Verification and Security Group University of Lugano March 9, 2011 Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 1 / 60 Outline 1


  1. Related Work Features • Post-processing approach • SAT/SMT solving framework • Compression techniques • Clauses subsumption checking [Amjad07] • Proof reordering based on literals linking [Amjad07] • Proof reordering based on variable splitting [Cotton10] • Merging of shared substructures in subproofs [Sinz07] • Memoization of shared substructures [Amjad08,Cotton10] • Algebraic approach, resolution hypergraphs [Fontaine10] • Removal pivots redundancies along paths [Bar-Ilan08] Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 12 / 60

  2. Notation Resolution System • Literal p p Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 13 / 60

  3. Notation Resolution System • Literal p p • Clause p ∨ q ∨ r ∨ . . . → pqr . . . • Empty clause ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 13 / 60

  4. Notation Resolution System • Literal p p • Clause p ∨ q ∨ r ∨ . . . → pqr . . . • Empty clause ⊥ pC pD • Resolution rule p CD Antecedent Resolvent Pivot Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 13 / 60

  5. Notation Resolution System • Literal p p • Clause p ∨ q ∨ r ∨ . . . → pqr . . . • Empty clause ⊥ pC pD • Resolution rule p CD Antecedent Resolvent Pivot • Resolution proof of unsatisfiability of a set of clauses S Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 13 / 60

  6. Notation Resolution System • Literal p p • Clause p ∨ q ∨ r ∨ . . . → pqr . . . • Empty clause ⊥ pC pD • Resolution rule p CD Antecedent Resolvent Pivot • Resolution proof of unsatisfiability of a set of clauses S • Tree • Leaves as clauses of S • Intermediate nodes as resolvents • Root as unique empty clause Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 13 / 60

  7. Resolution Proofs Example • Set of clauses { pq , pq , qr , qr } • Proof of unsatisfiability pq pq qr qr p r q q q ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 14 / 60

  8. Pivots Redundancies [Bar-Ilan08] • No need to resolve more than once on a pivot in a path leaf-root Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 15 / 60

  9. Pivots Redundancies [Bar-Ilan08] • No need to resolve more than once on a pivot in a path leaf-root • O.Bar-Ilan, O.Fuhrmann, S.Hoory, O.Shacham and O.Strichman: RecyclePivots Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 15 / 60

  10. Pivots Redundancies [Bar-Ilan08] • No need to resolve more than once on a pivot in a path leaf-root • O.Bar-Ilan, O.Fuhrmann, S.Hoory, O.Shacham and O.Strichman: RecyclePivots • Perform DFS from root to leaves • Track pivots occurrences along paths • In case of multiple occurrences keep the closest one to root • Output regular proof Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 15 / 60

  11. RecyclePivots Example pq po p qr pq qo pq q q po pr p or o o r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 16 / 60

  12. RecyclePivots Example pq po p qr pq qo pq q q po pr p or o o r { r } r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 17 / 60

  13. RecyclePivots Example pq po p qr pq qo pq q q po pr p or { r , o } o o r { r } r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 18 / 60

  14. RecyclePivots Example pq po p qo pq qr pq q q po { r , o , p } pr p or { r , o } o o r { r } r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 19 / 60

  15. RecyclePivots Example pq po p qo { r , o , p , q } pq qr pq q q po { r , o , p } pr p or { r , o } o o r { r } r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 20 / 60

  16. RecyclePivots Example pq po p qo { r , o , p , q } pq qr pq q q po { r , o , p } pr p or { r , o } o o r { r } r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 21 / 60

  17. RecyclePivots Example pq po p qo { r , o , p , q } pq qr pq q q po { r , o , p } pr p or { r , o } o o r { r } r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 22 / 60

  18. RecyclePivots Example qr pq pq pq q q po pr p or o o r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 23 / 60

  19. RecyclePivots Example qr pq pq pq q q p pr p or o o r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 24 / 60

  20. RecyclePivots Example qr pq pq pq q q p pr p r o o r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 25 / 60

  21. RecyclePivots Example qr pq pq pq q q p pr p r o o r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 26 / 60

  22. RecyclePivots Example qr pq pq pq q q p pr p r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 27 / 60

  23. Outline 1 Background 2 Motivation and Related Work 3 Contribution Proof Reduction Framework Implementation and Evaluation 4 Summary and Future Work Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 28 / 60

  24. Outline 1 Background 2 Motivation and Related Work 3 Contribution Proof Reduction Framework Implementation and Evaluation 4 Summary and Future Work Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 29 / 60

  25. Transformation Framework Features • Local rewriting rules Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 30 / 60

  26. Transformation Framework Features • Local rewriting rules • B reduction • A perturbation Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 30 / 60

  27. Transformation Framework Features • Local rewriting rules • B reduction • A perturbation • Rule context pqC pD p qCD qE q CDE Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 30 / 60

  28. Transformation Framework Features • Local rewriting rules • B reduction • A perturbation • Rule context pqC pD p qCD qE q CDE • Exhaustiveness up to symmetry Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 30 / 60

  29. Transformation Framework Local rewriting rules • B rules pqC pqD p pqC pqE B 1 ⇒ q qCD pqE q pCE pCDE Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 31 / 60

  30. Transformation Framework Local rewriting rules • B rules pqC pqD p pqC pqE B 1 ⇒ q qCD pqE q pCE pCDE • Redundancy as reintroduction variable after elimination Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 31 / 60

  31. Transformation Framework Local rewriting rules • B rules pqC pqD p pqC pqE B 1 ⇒ q qCD pqE q pCE pCDE • Redundancy as reintroduction variable after elimination • Subproof simplification Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 31 / 60

  32. Transformation Framework Local rewriting rules • B rules pqC pqD p pqC pqE B 1 ⇒ q qCD pqE q pCE pCDE • Redundancy as reintroduction variable after elimination • Subproof simplification • Subproof root strengthening Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 31 / 60

  33. Transformation Framework Local rewriting rules • A rules pqC pD pqC qE p q A 2 ⇒ qCD qE q pCE pD p CDE CDE Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 32 / 60

  34. Transformation Framework Local rewriting rules • A rules pqC pD pqC qE p q A 2 ⇒ qCD qE q pCE pD p CDE CDE • Pivots swapping Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 32 / 60

  35. Transformation Framework Local rewriting rules • A rules pqC pD pqC qE p q A 2 ⇒ qCD qE q pCE pD p CDE CDE • Pivots swapping • Topology perturbation Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 32 / 60

  36. Transformation Framework Local rewriting rules • A rules pqC pD pqC qE p q A 2 ⇒ qCD qE q pCE pD p CDE CDE • Pivots swapping • Topology perturbation • Redundancies exposure Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 32 / 60

  37. Local rewriting rules pqC pqD pqC qE qE pqD p q A 1 ⇒ qCD qE pCE pDE q p CDE CDE pqC pD pqC qE p q A 2 ⇒ qCD qE q pCE pD p CDE CDE pqC pqD p pqC pqE B 1 ⇒ q qCD pqE q pCE pCDE pqC pD pqC pqE p q B 2 ⇒ qDC pqE pCE pD q p pCDE CDE pqC pD p pqC pqE B 2 ′ ⇒ q qDC pqE q pCE pCDE pqC pD p B 3 ⇒ qCD pqE pD q pCDE Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 33 / 60

  38. Rule-based Approach Example pq po p qr pq qo pq q q po pr p or o o r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 34 / 60

  39. Rule-based Approach Example pq po p qr pq qo pq q q po pr p or o o r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 35 / 60

  40. Rule-based Approach Example qr pq pq pq q q p pr p or o o r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 36 / 60

  41. Rule-based Approach Example qr pq pq pq q q p pr p or o o r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 37 / 60

  42. Rule-based Approach Example qr pq pq pq q q p pr p r o o r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 38 / 60

  43. Rule-based Approach Example qr pq pq pq q q p pr p r o o r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 39 / 60

  44. Rule-based Approach Example qr pq pq pq q q p pr p r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 40 / 60

  45. Rule-based Approach Example qr pq pq pq q q p pr p r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 41 / 60

  46. Rule-based Approach Example pq pq q p pq p qr q q r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 42 / 60

  47. Rule-based Approach Example pq pq q p pq p qr q q r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 43 / 60

  48. Rule-based Approach Example pq pq q p pq p qr q q r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 44 / 60

  49. Rule-based Approach Example pq pq p qr q q r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 45 / 60

  50. Rule-based Approach Example pq pq p qr q q r r r ⊥ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 46 / 60

  51. Comparison • RecyclePivots Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 47 / 60

  52. Comparison • RecyclePivots • Pros Global information Fast and effective • Cons Cannot expose redundancies Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 47 / 60

  53. Comparison • RecyclePivots • Pros Global information Fast and effective • Cons Cannot expose redundancies • Rule-based approach Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 47 / 60

  54. Comparison • RecyclePivots • Pros Global information Fast and effective • Cons Cannot expose redundancies • Rule-based approach • Pros Flexibility in rules application Flexibility in amount of transformation Can expose redundancies • Cons Local information Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 47 / 60

  55. Outline 1 Background 2 Motivation and Related Work 3 Contribution Proof Reduction Framework Implementation and Evaluation 4 Summary and Future Work Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 48 / 60

  56. Implementation A Simple Algorithm • Based on a sequence of proof traversals (e.g. topological order) Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 49 / 60

  57. Implementation A Simple Algorithm • Based on a sequence of proof traversals (e.g. topological order) • Parameterized in number of traversals and time limit Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 49 / 60

  58. Implementation A Simple Algorithm • Based on a sequence of proof traversals (e.g. topological order) • Parameterized in number of traversals and time limit • Examination non-leaf clauses Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 49 / 60

  59. Implementation A Simple Algorithm • Based on a sequence of proof traversals (e.g. topological order) • Parameterized in number of traversals and time limit • Examination non-leaf clauses • Pivot in both antecedents → update, match context, apply rule pqC ′ pD ′ qC ′ D ′ qE ′ p qC ′ D ′ qE ′ ⇒ ⇒ q q qC ′ D ′ qE ′ CDE C ′ D ′ E ′ q C ′ D ′ E ′ Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 49 / 60

  60. Implementation A Simple Algorithm • Based on a sequence of proof traversals (e.g. topological order) • Parameterized in number of traversals and time limit • Examination non-leaf clauses • Pivot in both antecedents → update, match context, apply rule pqC ′ pD ′ qC ′ D ′ qE ′ p qC ′ D ′ qE ′ ⇒ ⇒ q q qC ′ D ′ qE ′ CDE C ′ D ′ E ′ q C ′ D ′ E ′ • Pivot not in both antecedents → remove resolution step C ′ D ′ qE ′ ⇒ q C ′ D ′ CDE Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 49 / 60

  61. Implementation A Simple Algorithm • Based on a sequence of proof traversals (e.g. topological order) • Parameterized in number of traversals and time limit • Examination non-leaf clauses • Pivot in both antecedents → update, match context, apply rule pqC ′ pD ′ qC ′ D ′ qE ′ p qC ′ D ′ qE ′ ⇒ ⇒ q q qC ′ D ′ qE ′ CDE C ′ D ′ E ′ q C ′ D ′ E ′ • Pivot not in both antecedents → remove resolution step C ′ D ′ qE ′ ⇒ q C ′ D ′ CDE • Easy combination with RecyclePivots Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 49 / 60

  62. Evaluation Framework and Benchmarks • Implemented in C++ and integrated with OpenSMT • Available at www.inf.usi.ch/phd/rollini/hvc.html Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 50 / 60

  63. Evaluation Framework and Benchmarks • Implemented in C++ and integrated with OpenSMT • Available at www.inf.usi.ch/phd/rollini/hvc.html • Benchmarks Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 50 / 60

  64. Evaluation Framework and Benchmarks • Implemented in C++ and integrated with OpenSMT • Available at www.inf.usi.ch/phd/rollini/hvc.html • Benchmarks • SMT: SMT-LIB library • SAT: SAT competition • Academic and industrial problems Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 50 / 60

  65. Combined Approach Evaluation Experimental results over SMT: QF UF, QF IDL, QF LRA, QF RDL # Avg nodes Avg edges Avg core T ( s ) Max nodes Max edges Max core RP 1370 6.7% 7.5% 1.3% 1.7 65.1% 68.9% 39.1% Ratio 0.01 1366 8.9% 10.7% 1.4% 3.4 66.3% 70.2% 45.7% 0.025 1366 9.8% 11.9% 1.5% 3.6 77.2% 79.9% 45.7% 0.05 1366 10.7% 13.0% 1.6% 4.1 78.5% 81.2% 45.7% 0.075 1366 11.4% 13.8% 1.7% 4.5 78.5% 81.2% 45.7% 0.1 1364 11.8% 14.4% 1.7% 5.0 78.8% 83.6% 45.7% 0.25 1359 13.6% 16.6% 1.9% 7.6 79.6% 84.4% 45.7% 0.5 1348 15.0% 18.4% 2.0% 11.5 79.1% 85.2% 45.7% 0.75 1341 16.0% 19.5% 2.1% 15.1 79.9% 86.1% 45.7% 1 1337 16.7% 20.4% 2.2% 18.8 79.9% 86.1% 45.7% • Ratio — time threshold as fraction of solving time • # — number of benchmarks solved • Avg nodes , Avg edges , Avg core — average reduction in proof size • T ( s ) — average transformation time in seconds • Max nodes , Max edges , Max core — max reduction in proof size Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 51 / 60

  66. Combined Approach Evaluation Experimental results over SMT: QF UF, QF IDL, QF LRA, QF RDL # Avg nodes Avg edges Avg core T ( s ) Max nodes Max edges Max core RP 1370 6.7% 7.5% 1.3% 1.7 65.1% 68.9% 39.1% Ratio 0.01 1366 8.9% 10.7% 1.4% 3.4 66.3% 70.2% 45.7% 0.025 1366 9.8% 11.9% 1.5% 3.6 77.2% 79.9% 45.7% 0.05 1366 10.7% 13.0% 1.6% 4.1 78.5% 81.2% 45.7% 0.075 1366 11.4% 13.8% 1.7% 4.5 78.5% 81.2% 45.7% 0.1 1364 11.8% 14.4% 1.7% 5.0 78.8% 83.6% 45.7% 0.25 1359 13.6% 16.6% 1.9% 7.6 79.6% 84.4% 45.7% 0.5 1348 15.0% 18.4% 2.0% 11.5 79.1% 85.2% 45.7% 0.75 1341 16.0% 19.5% 2.1% 15.1 79.9% 86.1% 45.7% 1 1337 16.7% 20.4% 2.2% 18.8 79.9% 86.1% 45.7% • Ratio — time threshold as fraction of solving time • # — number of benchmarks solved • Avg nodes , Avg edges , Avg core — average reduction in proof size • T ( s ) — average transformation time in seconds • Max nodes , Max edges , Max core — max reduction in proof size Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 52 / 60

  67. Combined Approach Evaluation Experimental results over SMT: QF UF, QF IDL, QF LRA, QF RDL # Avg nodes Avg edges Avg core T ( s ) Max nodes Max edges Max core RP 1370 6.7% 7.5% 1.3% 1.7 65.1% 68.9% 39.1% Ratio 0.01 1366 8.9% 10.7% 1.4% 3.4 66.3% 70.2% 45.7% 0.025 1366 9.8% 11.9% 1.5% 3.6 77.2% 79.9% 45.7% 0.05 1366 10.7% 13.0% 1.6% 4.1 78.5% 81.2% 45.7% 0.075 1366 11.4% 13.8% 1.7% 4.5 78.5% 81.2% 45.7% 0.1 1364 11.8% 14.4% 1.7% 5.0 78.8% 83.6% 45.7% 0.25 1359 13.6% 16.6% 1.9% 7.6 79.6% 84.4% 45.7% 0.5 1348 15.0% 18.4% 2.0% 11.5 79.1% 85.2% 45.7% 0.75 1341 16.0% 19.5% 2.1% 15.1 79.9% 86.1% 45.7% 1 1337 16.7% 20.4% 2.2% 18.8 79.9% 86.1% 45.7% • Ratio — time threshold as fraction of solving time • # — number of benchmarks solved • Avg nodes , Avg edges , Avg core — average reduction in proof size • T ( s ) — average transformation time in seconds • Max nodes , Max edges , Max core — max reduction in proof size Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 53 / 60

  68. Combined Approach Evaluation Experimental results over SAT # Avg nodes Avg edges Avg core T ( s ) Max nodes Max edges Max core RP 25 5.9% 6.5% 1.7% 10.8 33.1% 33.4% 30.3% Ratio 0.01 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5% 0.025 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5% 0.05 25 7.0% 8.2% 1.8% 40.0 34.0% 34.4% 30.5% 0.075 25 7.2% 8.4% 1.8% 49.3 34.7% 35.1% 30.5% 0.1 25 7.3% 8.4% 1.8% 60.2 34.7% 35.1% 30.5% 0.25 25 7.6% 8.8% 1.9% 125.3 39.8% 40.6% 31.7% 0.5 25 7.8% 9.1% 1.9% 243.5 41.0% 41.9% 32.1% 0.75 25 7.9% 9.3% 1.9% 360.0 41.6% 42.6% 32.1% 1 23 8.4% 9.9% 2.1% 175.6 33.1% 33.4% 30.6% • Ratio — time threshold as fraction of solving time • # — number of benchmarks solved • Avg nodes , Avg edges , Avg core — average reduction in proof size • T ( s ) — average transformation time in seconds • Max nodes , Max edges , Max core — max reduction in proof size Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 54 / 60

  69. Combined Approach Evaluation Experimental results over SAT # T ( s ) Avg nodes Avg edges Avg core Max nodes Max edges Max core RP 25 5.9% 6.5% 1.7% 10.8 33.1% 33.4% 30.3% Ratio 0.01 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5% 0.025 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5% 0.05 25 7.0% 8.2% 1.8% 40.0 34.0% 34.4% 30.5% 0.075 25 7.2% 8.4% 1.8% 49.3 34.7% 35.1% 30.5% 0.1 25 7.3% 8.4% 1.8% 60.2 34.7% 35.1% 30.5% 0.25 25 7.6% 8.8% 1.9% 125.3 39.8% 40.6% 31.7% 0.5 25 7.8% 9.1% 1.9% 243.5 41.0% 41.9% 32.1% 0.75 25 7.9% 9.3% 1.9% 360.0 41.6% 42.6% 32.1% 1 23 8.4% 9.9% 2.1% 175.6 33.1% 33.4% 30.6% • Ratio — time threshold as fraction of solving time • # — number of benchmarks solved • Avg nodes , Avg edges , Avg core — average reduction in proof size • T ( s ) — average transformation time in seconds • Max nodes , Max edges , Max core — max reduction in proof size Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 55 / 60

  70. Combined Approach Evaluation Experimental results over SAT # T ( s ) Avg nodes Avg edges Avg core Max nodes Max edges Max core RP 25 5.9% 6.5% 1.7% 10.8 33.1% 33.4% 30.3% Ratio 0.01 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5% 0.025 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5% 0.05 25 7.0% 8.2% 1.8% 40.0 34.0% 34.4% 30.5% 0.075 25 7.2% 8.4% 1.8% 49.3 34.7% 35.1% 30.5% 0.1 25 7.3% 8.4% 1.8% 60.2 34.7% 35.1% 30.5% 0.25 25 7.6% 8.8% 1.9% 125.3 39.8% 40.6% 31.7% 0.5 25 7.8% 9.1% 1.9% 243.5 41.0% 41.9% 32.1% 0.75 25 7.9% 9.3% 1.9% 360.0 41.6% 42.6% 32.1% 1 23 8.4% 9.9% 2.1% 175.6 33.1% 33.4% 30.6% • Ratio — time threshold as fraction of solving time • # — number of benchmarks solved • Avg nodes , Avg edges , Avg core — average reduction in proof size • T ( s ) — average transformation time in seconds • Max nodes , Max edges , Max core — max reduction in proof size Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 56 / 60

  71. Outline 1 Background 2 Motivation and Related Work 3 Contribution Proof Reduction Framework Implementation and Evaluation 4 Summary and Future Work Natasha Sharygina (USI) Flexible Proof Reduction March 9, 2011 57 / 60

Recommend


More recommend