amplitudes and the scattering equations proofs and
play

Amplitudes and the Scattering Equations, Proofs and Polynomials - PowerPoint PPT Presentation

Amplitudes and the Scattering Equations, Proofs and Polynomials Louise Dolan University of North Carolina at Chapel Hill Strings 2014, Princeton (work with Peter Goddard, IAS) 1402.7374 [hep-th], The Polynomial Form of the Scattering Equations


  1. Amplitudes and the Scattering Equations, Proofs and Polynomials Louise Dolan University of North Carolina at Chapel Hill Strings 2014, Princeton (work with Peter Goddard, IAS) 1402.7374 [hep-th], The Polynomial Form of the Scattering Equations 1311.5200 [hep-th], Proof of the Formula of Cachazo, He and Yuan for Yang-Mills Tree Amplitudes in Arbitrary Dimension 1111.0950 [hep-th], Complete Equivalence Between Gluon Tree Amplitudes in Twistor String Theory and in Gauge Theory

  2. See also Freddy Cachazo, Song He, and Ellis Yuan (CHY) 1309.0885 [hep-th], Scattering of Massless Particles: Scalars, Gluons and Gravitons 1307.2199 [hep-th], Scattering of Massless Particles in Arbitrary Dimensions 1306.6575 [hep-th], Scattering Equations and KLT Orthogonality Edward Witten, hep-th/0312171, Perturbative Gauge Theory as a String theory in Twistor Space Nathan Berkovits, hep-th/0402045, An Alternative String Theory in Twistor Space for N=4 SuperYang-Mills

  3. Outline • Tree amplitudes from the Scattering Equations in any dimension • M¨ obius invariance and massive Scattering Equations • Proof of the equivalence with ϕ 3 and Yang-Mills field theories • In 4d: link variables, twistor string ↔ the Scattering Equations • Direct proof of equivalence between twistor string and field theory gluon tree amplitudes • Polynomial form of the Scattering Equations

  4. Tree Amplitudes ∮ ∏ ∏ / 1 dz a ′ A ( k 1 , k 2 , . . . , k N ) = Ψ N ( z , k , ϵ ) d ω, ( z a − z a +1 ) 2 f a ( z , k ) O a ∈ A a ∈ A O encircles the zeros of f a ( z , k ), ∑ k a · k b f a ( z , k ) ≡ = 0 The Scattering Equations z a − z b b ∈ A b ̸ = a ( Cachazo , He , Yuan 2013) . . . ( Fairlie , Roberts 1972) ∑ k 2 k µ A = { 1 , 2 , . . . N . } a = 0 , a = 0 , a ∈ A DG proved A ( k 1 , k 2 , . . . k n ) are ϕ 3 and Yang-Mills gluon field theory tree amplitudes , as conjectured by CHY.

  5. z a → α z a + β M¨ obius Invariance γ z a + δ , ∮ ∏ ∏ / 1 dz a ′ A ( k 1 , k 2 , . . . , k N ) = Ψ N ( z , k , ϵ ) d ω ( z a − z a +1 ) 2 f a ( z , k ) O a ∈ A a ∈ A ∏ ∏ 1 1 ′ f a ( z , k ) ≡ ( z 1 − z 2 )( z 2 − z N )( z N − z 1 ) f a ( z , k ) a ∈ A a ∈ A a ̸ =1 , 2 , N ∏ ∏ ( αδ − βδ ) 1 ′ → f a ( z , k ) , ( γ z a + δ ) 2 a ∈ A a ∈ A Ψ N ( z , k , ϵ ) is M¨ obius invariant, Ψ N = ∏ Ψ N = 1 for ϕ 3 , a ∈ A ( z a − z a +1 ) × Pffafian for Yang-Mills The integrand and the Scattering Equations are M¨ obius invariant (CHY).

  6. � k 2 a = m 2 Massive Scattering Equations f a ( z , k ) = 0, ∏ ( z a − z b ) − k a · k b ∏ ( z a − z a +1 ) − m 2 U ( z , k ) ≡ is M¨ obius invariant, 2 a < b a ∈ A ∑ m 2 m 2 k a · k b ∂ U = − � � f a U , f a ( z , k ) = + 2( z a − z a +1 ) + 2( z a − z a − 1 ) , ∂ z a z a − z b b ∈ A b ̸ = a f a ( z )( γ z a + δ ) 2 implying � f a ( z ) → � ( αδ − βγ ) . The infinitesimal transformations δ z a = ϵ 1 + ϵ 2 z a + ϵ 3 z 2 a , U ( z + δ z ) ∼ U ( z ) + ∂ U δ z a , so the � f a satisfy the three relations ∂ z a ∑ ∑ ∑ � z a � a � z 2 f a = 0 , f a = 0 , f a = 0 . a ∈ A a ∈ A a ∈ A There are N − 3 independent Scattering Equations � f a = 0. Fixing z 1 = ∞ , z 2 = 1 , z N = 0, there are N − 3 variables, f = f when m 2 = 0 . ˆ and generally ( N − 3)! solutions z a ( k ).

  7. Total Amplitudes For example, N = 4, A abcd ( k 1 , k 2 , k 3 , k 4 ) = g 2 ( ) n s n t n u f abe f ecd s + f bce f ead t + f cae f ebd u = g 2 (( ) tr ( T a T b T c T d ) + tr ( T d T c T b T a ) A (1234) ( ) + tr ( T a T c T d T b ) + tr ( T b T d T c T a ) A (1342) ) ( ) + tr ( T a T d T b T c ) + tr ( T c T b T d T a ) A (1423) , ( ) ϵ 1 · ϵ 2 ( k 1 − k 2 ) α + 2 ϵ 1 · k 2 ϵ 2 α − 2 ϵ 2 · k 1 ϵ 1 α n s = ( ) ϵ 3 · ϵ 4 ( k 3 − k 4 ) α + 2 ϵ 3 · k 4 ϵ α 4 − 2 ϵ 4 · k 3 ϵ α × 3 ( ) ϵ 1 · ϵ 3 ϵ 2 · ϵ 4 − ϵ 1 · ϵ 4 ϵ 2 · ϵ 3 + s , A (1234) = n s s + n t t . s = ( k 1 + k 2 ) 2 , t = ( k 2 + k 3 ) 2 , u = ( k 1 + k 3 ) 2 A ( k 1 , k 2 , k 3 , k 4 ) = A (1234) .

  8. A Single Scalar Field, Massless ϕ 3 A single massless scalar field, Ψ N = 1. ∮ ∏ ∏ / 1 dz a ′ A ϕ ( k 1 , k 2 , . . . , k N ) = d ω ( z a − z a +1 ) 2 f a ( z , k ) O a ∈ A a ∈ A A ϕ ( k 1 , k 2 , k 3 , k 4 ) = 1 s +1 t , A total = A ϕ ( k 1 , k 2 , k 3 , k 4 )+ A ϕ ( k 1 , k 3 , k 2 , k 4 ) + A ϕ ( k 1 , k 4 , k 2 , k 3 ) ( 1 ) s + 1 t + 1 = 2 u

  9. Proof of the Formula of CHY for Massless ϕ 3 A ϕ N ( ζ ) = A ϕ N ( k 1 , k 2 + ζℓ, k 3 , . . . , k N − 1 , k N − ζℓ ) , For ℓ 2 = ℓ · k 2 = ℓ · k N = 0, these shifted, ordered field theory tree amplitudes have simple poles in ζ , and A ϕ N ( ζ ) → 0 as ζ → ∞ . Res ζ i A ϕ ∑ A ϕ N N ( ζ ) = − ζ i − ζ i m ) 2 = 0 or (¯ m ) 2 = 0, i.e. at The poles ζ i occur where ( π ζ π ζ ζ = s m / 2 π m · ℓ ≡ ζ L π m · ℓ ≡ ζ R m , and ζ = − ¯ s m / 2¯ m , 3 ≤ m ≤ N − 1 , with residues given by 1 m ( k 1 , k ζ R π ζ R m A ϕ N = A ϕ 2 , k 3 , . . . , k m − 1 , − ¯ Res ζ R m m ) m 2¯ π m · ℓ π ζ R m , k m , . . . , k N − 1 , k ζ R × A ϕ N − m +2 (¯ m N ) , m π m ≡ − k m − k 3 − . . . − k N ; s m = π 2 π 2 π m ≡ − k 2 − k 3 − . . . − k m , ¯ m , ¯ s m = ¯ m .

  10. A ϕ ( k 1 , k 2 , . . . , k N ) = A ϕ N ( ζ = 0) [ 2 π m · ℓ ] N − 1 ∑ N − 2¯ π m · ℓ m A ϕ m A ϕ = − 2 Res ζ L Res ζ R ∗ N s m ¯ s m m =3 which determines A ϕ ( k 1 , . . . k N ) for N > 3 from A ϕ ( k 1 , k 2 , k 3 ) = 1. Our proof is to show A ϕ = A ϕ satisfies ∗ . ∮ ∏ N − 2 ∏ N − 1 N − 1 b − 2 N − 1 ∏ ∏ ∏ a =3 z a a =4 (1 − z a ) dz a A ϕ ( z a − z b ) 2 N ( ζ ) ∼ (1 − z 3 ) z N − 1 f a ( z , ζ ) b =5 a =3 a =3 A pole at ζ R m comes from the integration region z a → 0, m ≤ a ≤ N − 1. Let z a = x a z m , z m → 0,

  11. ∏ N − 1 a =3 dz a = ∏ m − 1 ∏ N − 1 a =3 dz a dz m a = m +1 dx a , 1 m ( k 1 , k ζ R π ζ R m A ϕ N = A ϕ 2 , k 3 , . . . , k m − 1 , − ¯ Res ζ R m m ) m 2¯ π m · ℓ π ζ R m , k m , . . . , k N − 1 , k ζ R × A ϕ N − m +2 (¯ N ) , m m m A ϕ Similarly for Res ζ L N . So proving the formula for A ϕ ( k 1 , . . . , k N ) by induction.

  12. Proof for Pure Gauge Theory ∮ ∏ N − 2 ∏ N − 1 N − 1 b − 2 N − 1 ∏ ∏ ∏ a =3 z a a =4 (1 − z a ) dz a Ψ o ( z a − z b ) 2 A YM N ( ζ ) ∼ N (1 − z 3 ) z N − 1 f a ( z , ζ ) b =5 a =3 a =3 where the only difference from the scalar case is Ψ o N , which is related to the Pfaffian of the antisymmetric matrix M N with the 2nd and Nth rows and columns removed, N ∏ Ψ o N = ( − 1) N Pf M N ( z ; k ζ ; ϵ ζ ) (2 , N ) ( z a − z a +1 ) , a =1 det M ≡ (Pf M) 2 , ℓ − 2( ζ/ k 2 · k N ) k N , ϵ ζ − = ℓ ; ϵ ζ ± ϵ ζ + = ¯ 4 , 2 2 ℓ 2 = ¯ ¯ ℓ · k 2 = ¯ ℓ · k N = 0 , ℓ · ¯ ℓ = 2 .

  13. All singularities in Ψ o N are canceled by the numerator. Ψ o N factorizes at the poles in the integrand ζ L , R m , since the Pfaffian does. As z m → 0, Pf M N ( k 1 , . . . , k N ; ϵ 1 , . . . , ϵ N ; z 3 , . . . , z N − 1 ) (2 , N ) ∑ π m ; ϵ 1 , . . . , ϵ m − 1 , ϵ s ; z 3 , . . . , z m − 1 ) (2 , m ) ∼ Pf, M m ( k 1 , . . . , k m − 1 , − ¯ s π m , k m , . . . , k N ; ϵ s , ϵ m , . . . , ϵ N ; x m +1 , . . . , x N − 1 ) (1 , N − m +2) , × Pf M N − m +2 (¯ and N − 1 m − 2 N − 1 ∏ ∏ ∏ ( z a − z a +1 ) → z m − 1 z N − m ( z a − z a +1 ) ( x a − x a +1 ) m a = m a =2 a =2 This demonstrates that A YM N ( ζ = 0) satisfies the BCFW recurrence relation, so that A YM ( k 1 , . . . k N ), computed from the scattering equations, are equal to the Yang Mills field theory tree amplitudes.

  14. Twistor String Theory (4d) k µ σ µ α ˙ α ≡ k α ˙ α = π α ¯ π ˙ α , Conjugate twistor variables ( π α ) ( ¯ ) ω α ω α π α + ¯ α ω ˙ α , Z = , W = , W · Z = ¯ π ˙ ω ˙ α π ˙ ¯ α ( λ α ( ρ ) ) and twistor string worldsheet fields, Z ( ρ ) = . µ ˙ α ( ρ ) Fourier transform gluon vertex operators according to helicity: ∫ d κ V A κ e i κ W · Z ( ρ ) J A , + ( W , ρ ) = ∫ κ 3 d κ δ 4 ( κ Z ( ρ ) − Z ) J A ψ 1 . . . ψ 4 . V A − ( Z , ρ ) = ∫ ⟨ 0 | e ( n − 1) q 0 ∏ Tree M ϵ 1 ...ϵ N = s ∈N δ 4 ( κ s Z ( ρ s ) − Z s ) { } i ∑ | 0 ⟩ ∏ N ∏ d ρ a d κ a s ∈N κ 4 × exp j ∈P κ j W j · Z ( ρ j ) a =1 s κ a / × ∏ r < s ; r , s ∈N ( ρ r − ρ s ) 4 ⟨ 0 | J A 1 ( ρ 1 ) J A 2 ( ρ 2 ) . . . J A N ( ρ N ) | 0 ⟩ dg

  15. δ 4 ( κ s Z ( ρ s ) − Z s ) Z ( ρ ) = Z 0 + Z − 1 ρ + · · · + Z − n +1 ρ n − 1 , polynomial of order n − 1, so Z ( ρ ) = ∑ ∏ ρ − ρ r 1 κ s Z s ρ s − ρ r , where κ s Z ( ρ s ) = Z s . s ∈N r ̸ = s ; r ∈N The positive helicity vertices become j ∈P κ j W j · Z ( ρ j ) = e i ∑ e i ∑ ∑ s ∈N c js W j · Z s j ∈P ∏ ρ j − ρ r where c js = κ j λ j ρ s − ρ r = λ s ( ρ j − ρ s ) are the link variables. r ̸ = s ; r ∈N κ s Fourier transforming to momentum space, M ϵ 1 ...ϵ N = ⟨ r 1 , r n ⟩ 2 ( ρ r 1 − ρ r n ) 2 ∫ ∏ j ∈P δ 2 ( ) π j − ∑ r ∈N c jr π r s ∈N ′ δ 2 ( ) × ∏ π s + ∑ ¯ i ∈P ¯ π i c is × ∏ N ∏ N 1 d κ a d ρ a . a =1 a =1 ( ρ a − ρ a +1 ) κ a a ̸ = r 1 , rn

Recommend


More recommend