scattering amplitudes from soft theorems
play

Scattering amplitudes from soft theorems Yohei Ema University of - PowerPoint PPT Presentation

Scattering amplitudes from soft theorems Yohei Ema University of Tokyo PPP2017 @ YITP 2017.08.02 On-going work with S. Chigusa, H. Shimizu, Y. Tachikawa and T. Yamaura Introduction Scattering amplitude theory Scattering amplitude is of


  1. Scattering amplitudes from soft theorems Yohei Ema University of Tokyo PPP2017 @ YITP 2017.08.02 On-going work with S. Chigusa, H. Shimizu, Y. Tachikawa and T. Yamaura

  2. Introduction

  3. Scattering amplitude theory • Scattering amplitude is of central importance in particle physics. • It sometimes shows a surprising simplicity that is not obvious from the standard Feynman diagrammatic method. ex. 6pt Maximally Helicity Violated (MHV) amplitude of pure YM: h 1 2 i 4 A 6 [1 − 2 − 3 + 4 + 5 + 6 + ] = h 1 2 ih 2 3 ih 3 4 ih 4 5 ih 5 6 ih 6 1 i after summing over 220 (!) diagrams. • Scattering amplitude program tries to construct amplitudes from analytical properties, not relying (heavily) on Feynman diagrams.

  4. Goal of this talk • Show that tree-level YM/gravity amplitudes are recursively constructible, with leading soft theorem being an input. • We also review basic ingredients of modern scattering amplitude theory.

  5. Outline 1. Introduction 2. Review A: spinor helicity formalism 3. Review B: on-shell recursion 4. Review C: soft theorems 5. Idea (and explicit computation) 6. Summary

  6. Outline 1. Introduction 2. Review A: spinor helicity formalism 3. Review B: on-shell recursion 4. Review C: soft theorems 5. Idea (and explicit computation) 6. Summary

  7. Spinor helicity formalism • Consider 4-dim theory with only massless particles. • The momentum satisfies σ µ ) ˙ ab p ˙ ab ≡ p µ (¯ a [ p | b . det p = − p µ p µ = 0 ab = � | p i ˙ p ˙ • The momentum product in this language is ˙ [ p q ] ≡ ✏ ab [ p | a [ q | b . 2 p · q = h p q i [ p q ] b | p i ˙ a | q i b where and h p q i ⌘ ✏ ˙ a ˙ Amplitudes are constructed from these products. • Little group keeps momentum intact. In terms of angle/square brackets: | p i ! t | p i , | p ] ! t − 1 | p ] . • Amplitude transforms due to the external lines as: = t − 2 h i ..., { t i | i i , t − 1 � � i | i ] , h i } , ... A n ( ..., {| i i , | i ] , h i } , ... ) . A n i • Three point amplitude is determined solely from little group scaling.

  8. Outline 1. Introduction 2. Review A: spinor helicity formalism 3. Review B: on-shell recursion 4. Review C: soft theorems 5. Idea (and explicit computation) 6. Summary

  9. Complex momentum shift [Britto, Cachazo, Feng, 04; Britto, Cachazo, Feng, Witten, 05] • Consider the following complex momentum shift: p i ( z ) ≡ p i + zq i , where on-shell condition of p i · q i = q 2 ˆ p i ( z ) ˆ i = 0 : X and momentum conservation of . p i ( z ) ˆ q i = 0 : i Shifted amplitude is a function of z : ˆ A n ( z ) A n = ˆ (original amplitude is ). A n (0) • Poles: associated with on-shell intermediate particle (Locality). Oltshenamp . ACH d 3 Au Ar , . ¥-1 / \ I .µ - 2 fdiacpnnaitpnns ? n ; ' → • Amplitude factorizes near the poles as I Fi y . . , NL 1 A ( z ) → ˆ ˆ A R ( z I ) , ˆ ˆ P 2 A L ( z I ) I ( z ) ∝ ( z − z I ) . ˆ P 2 I ( z )

  10. On-shell recursion [Britto, Cachazo, Feng, 04; Britto, Cachazo, Feng, Witten, 05] • From the standard complex analysis, we obtain 1 A ( z ) = − 1 1 dz dz I I ˆ ˆ ˆ ˆ X A (0) = A L ( z I ) A R ( z I ) + B ∞ . ˆ 2 π i 2 π i z z P 2 I ( z ) | z | =0 | z − z I | =0 I (b) (a) • : products of lower point on-shell amplitudes. (a) • : contribution from which vanishes when lim ˆ (b) | z | = ∞ , A ( z ) = 0 . | z | →∞ on-shell constructibility of the theory B ∞ = 0 ⇔ • Two (or more) ways to achieve on-shell constructibility: (1) Invent a good momentum shift (such as BCFW shift) ˆ ˆ A ( z ) A ( z ) (2) Modify the integrand as zf ( z ) . → [Cheung, Kampf, Novotny, Shen, Trnka, 15] z (We should know how the amplitude behaves as ) f ( z ) → 0 .

  11. On-shell recursion [Britto, Cachazo, Feng, 04; Britto, Cachazo, Feng, Witten, 05] • From the standard complex analysis, we obtain 1 A ( z ) = − 1 1 dz dz I I ˆ ˆ ˆ ˆ X A (0) = A L ( z I ) A R ( z I ) + B ∞ . ˆ 2 π i 2 π i z z P 2 I ( z ) | z | =0 | z − z I | =0 I (b) (a) • : products of lower point on-shell amplitudes. (a) • : contribution from which vanishes when lim ˆ (b) | z | = ∞ , A ( z ) = 0 . | z | →∞ on-shell constructibility of the theory B ∞ = 0 ⇔ • Two (or more) ways to achieve on-shell constructibility: (1) Invent a good momentum shift (such as BCFW shift) ˆ ˆ A ( z ) A ( z ) (2) Modify the integrand as zf ( z ) . → [Cheung, Kampf, Novotny, Shen, Trnka, 15] z (We should know how the amplitude behaves as ) f ( z ) → 0 .

  12. (Anti-)holomorphic shift [Cohen, Elvang, Kiermaier, 10] • We will stick to the following complex momentum shifts. X | ˆ i i = | i i � a i z | X i , | ˆ Holomorphic shift: with a i | i ] = 0 . i ] = | i ] | ˆ i i = | i i , | ˆ X Anti-holomorphic shift: with a i | i i = 0 . i ] = | i ] � a i z | X ] q i = � a i | X i [ i | ! q 2 * for holomorphic shift. i = q i · p i = 0 ** Similar relation holds for anti-holomorphic shift. • We will take or in the following. | X i = | 1 i | X ] = | 1] z = 1 /a 1 corresponds to the soft limit of the particle 1.

  13. Large z behavior P h ... i a n [ ... ] s n • If coupling dimension is unique, amplitude is A n = g P h ... i a d [ ... ] s d . * : common due to little group scaling and mass dimension. a i , s i Let us define a ≡ a n − a d , s ≡ s n − s d . • Dimensional analysis: a + s = 4 − n − [ g ] where mass dimension of coupling [ g ] : g. • Little group scaling: X h i where helicity of i-th particle. a − s = − h i : [Cohen, Elvang, Kiermaier, 10] i ˆ Hol shift: lim X A n ( z ) → O ( z a ) with 2 a = 4 − n − [ g ] − h i . z →∞ i Anti-hol shift: ˆ X with 2 s = 4 − n − [ g ] + lim A n ( z ) → O ( z s ) h i . z →∞ i * YM: Einstein gravity: [ g ] = − n + 2 . [ g ] = 0 ,

  14. Outline 1. Introduction 2. Review A: spinor helicity formalism 3. Review B: on-shell recursion 4. Review C: soft theorems 5. Idea (and explicit computation) 6. Summary

  15. Leading soft theorems [Low 58; Weinberg 65; …] • Leading soft theorem: { p ✏ | 1 i , p ✏ | 1] , h 1 } , ... = 1 ✏ S (0) A n − 1 ( {| 2 i , | 2] , h 2 } , ... ) + O ( ✏ 0 ) � � A n n [1 k ] h x k ih y k i S (0) = X where for positive helicity graviton h 1 k ih x 1 ih y 1 i k =2 h x 2 i h x 4 i S (0) = and for positive helicity gluon (color-ordered). h x 1 ih 1 2 i � h x 1 ih 1 4 i • From little group scaling, it behaves under hol/anti-hol soft limit as A n ( { ✏ | 1 i , | 1] , h 1 } , ... ) = ✏ − 1 − h 1 S (0) A n − 1 ( {| 2 i , | 2] , h 2 } , ... ) + O ( ✏ − h 1 ) and A n ( {| 1 i , ✏ | 1] , h 1 } , ... ) = ✏ − 1+ h 1 S (0) A n − 1 ( {| 2 i , | 2] , h 2 } , ... ) + O ( ✏ h 1 ) .

  16. Outline 1. Introduction 2. Review A: spinor helicity formalism 3. Review B: on-shell recursion 4. Review C: soft theorems 5. Idea (and explicit computation) 6. Summary

  17. What we learned so far • Integrand should fall off at large z for on-shell constructibility. • Under holomorphic or anti-holomorphic shift: ˆ A 4 [1 + 2 + 3 − 4 − ] → const for pure YM theory lim z →∞ ˆ and at worst for Einstein gravity. lim M n ( z ) → z z →∞ • Under holomorphic/anti-holomorphic soft limit: A n ( { ✏ | 1 i , | 1] , h 1 } , ... ) = ✏ − 1 − h 1 S (0) A n − 1 + O ( ✏ − h 1 ) A n ( {| 1 i , ✏ | 1] , h 1 } , ... ) = ✏ − 1+ h 1 S (0) A n − 1 + O ( ✏ h 1 ) . and

  18. Idea • Main idea: use soft theorem to take better integrand. • Consider the worst case and assume X h i = 0 h 1 > 0 . Under anti-holomorphic soft shift, ˆ ˆ large z behavior is for YM and for gravity. A 4 ( z ) → z 0 M n ( z ) → z 1 lim lim z →∞ z →∞ S (0) ˆ A 4 ( z ) = ˆ ˆ A 3 | z =1 /a 1 + O ( ✏ 1 ) Soft limit is for YM S (0) ˆ M n ( z ) = ✏ ˆ ˆ M n − 1 | z =1 /a 1 + O ( ✏ 2 ) and for gravity with ✏ ≡ 1 − a 1 z. Take integrand as I dz I dz ˆ ˆ M n ( z ) A 4 ( z ) for YM and for gravity! (1 − a 1 z ) 2 1 − a 1 z z z Integrand falls off rapidly enough at large z. Residue at is nothing but the leading soft term. z = 1 /a 1

  19. Computation: gluon 4pt • Consider 4pt (color-ordered) YM amplitude A 4 [1 + 2 + 3 − 4 − ] . • Under anti-holomorphic soft shift, pole is only at z = 1 /a 1 . p j ( z )) 2 ∝ (1 − a 1 z ) ( p i + p j ) 2 . * (ˆ p i ( z ) + ˆ We need to consider only the soft factor (soft limit is ``exact’’): S (0) ˆ A 4 [1 + 2 + 3 − 4 − ] = ˆ A 3 [2 + 3 − 4 − ] | z =1 /a 1 3pt from little group h 3 4 i 4 ✓ ◆ h x 2 i h x 4 i = h x 1 ih 1 2 i � h x 1 ih 1 4 i h 2 3 ih 3 4 ih 4 2 i h 3 4 i 4 = h 1 2 ih 2 3 ih 3 4 ih 4 1 i , where Schouten identity is used. | 1 ih 2 4 i + | 2 ih 4 1 i + | 4 ih 1 2 i = 0 : It correctly reproduces the Parke-Taylor MHV amplitude. [Parke and Taylor 86]

Recommend


More recommend