all surfaces are orientable
play

(All surfaces are orientable) M C = { M R 3 complete embedded - PowerPoint PPT Presentation

Recent advances in minimal surface theory in R 3 Joaqu n P erez (joint work with Bill Meeks & Antonio Ros) email: jperez@ugr.es http://wdb.ugr.es/ jperez/ Work partially supported by the State Research Agency (SRA) and European


  1. Recent advances in minimal surface theory in R 3 Joaqu´ ın P´ erez (joint work with Bill Meeks & Antonio Ros) email: jperez@ugr.es http://wdb.ugr.es/ ∼ jperez/ Work partially supported by the State Research Agency (SRA) and European Regional Development Fund (ERDF) Grants no. MTM2014-52368-P and MTM2017-89677-P (AEI/FEDER, UE) Modern Trends in Differential Geometry S˜ ao Paulo, 23-27 July 2018 Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 1 / 16

  2. (All surfaces are orientable) M C = { M ⊂ R 3 complete embedded minimal surface | g ( M ) < ∞} M C ( g ) = { M ∈ M C | g ( M ) = g } M P = { M ∈ M C | proper } , M P ( g ) = M P ∩ M C ( g ) Main goals: 1. Examples; special families 4. Classification 2. Conformal structure 5. Properness vs completeness 3. Asymptotics 6. Limits M ∈ M C ⇒ M noncompact ⇒ E ( M ) = { ends of M } � = Ø. Definition 1 A = { α : [0 , ∞ ) → M proper arc } . α 1 ∼ α 2 if ∀ C ⊂ M cpt set, α 1 , α 2 lie eventually in the same compnt of M − C . E ( M ) = A / ∼ ← − set of ends of M . E ⊂ M proper subdomain, ∂ E cpt. E represents [ α ] ∈ M ( E ) if α [ t 0 , ∞ ) ⊂ E for some t 0 . M C ( g , k ) = { M ∈ M C ( g ) | # E ( M ) = k } , k ∈ N ∪ {∞} M P ( g , k ) = M P ∩ M C ( g , k ). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 2 / 16

  3. Surfaces with finite topology (# E ( M ) < ∞ ) “Classical” examples: plane catenoid (1744) helicoid (1776) Costa (1982) Hoffman-Meeks (1990) Theorem 1 (Colding-Minicozzi, Annals 2008) M ∈ M C , # E ( M ) < ∞ ⇒ M ∈ M P . Calabi-Yau problem: M C = M P ? Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 3 / 16

  4. # E ( M ) = 1 (one-ended surfaces) Theorem 2 (Meeks-Rosenberg, Annals 2005) M P (0 , 1) = { plane, helicoid } (conformally C ). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 4 / 16

  5. # E ( M ) = 1 (one-ended surfaces) Theorem 2 (Meeks-Rosenberg, Annals 2005) M P (0 , 1) = { plane, helicoid } (conformally C ). Theorem 3 (Bernstein-Breiner’ Commentarii 2011, Meeks-P) M ∈ M P ( g , 1) , g ≥ 1 ⇒ M asymptotic to helicoid (conformally parabolic) M parabolic def ⇔� ∃ f ∈ C ∞ ( M ) nonconstant s.t. f ≤ 0, ∆ f ≥ 0. Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 4 / 16

  6. # E ( M ) = 1 (one-ended surfaces) Theorem 2 (Meeks-Rosenberg, Annals 2005) M P (0 , 1) = { plane, helicoid } (conformally C ). Theorem 3 (Bernstein-Breiner’ Commentarii 2011, Meeks-P) M ∈ M P ( g , 1) , g ≥ 1 ⇒ M asymptotic to helicoid (conformally parabolic) Theorem 4 (Hoffman-Weber-Wolf, Annals 2009) M P (1 , 1) � = Ø (existence of a genus 1 helicoid). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 4 / 16

  7. # E ( M ) = 1 (one-ended surfaces) Theorem 2 (Meeks-Rosenberg, Annals 2005) M P (0 , 1) = { plane, helicoid } (conformally C ). Theorem 3 (Bernstein-Breiner’ Commentarii 2011, Meeks-P) M ∈ M P ( g , 1) , g ≥ 1 ⇒ M asymptotic to helicoid (conformally parabolic) Theorem 4 (Hoffman-Weber-Wolf, Annals 2009) M P (1 , 1) � = Ø (existence of a genus 1 helicoid). Theorem 5 (Hoffman-Traizet-White, Acta 2016) ∀ g ∈ N , M P ( g , 1) � = Ø (existence of a genus g helicoid). Uniqueness? Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 4 / 16

  8. 2 ≤ # E ( M ) = k < ∞ Theorem 6 (Collin, Annals 1997) � M ∈ M P ( g , k ) , 2 ≤ k < ∞ ⇒ finite total curvature ( M K > −∞ ) conf. ∼ Consequence: M = M g − { p 1 , . . . , p k } , ends asymptotic to planes or half-catenoids, Gauss map extends meromorphically through the p i (Osserman) Theorem 7 (Schoen, JDG 1983) M ∈ M C ( g , 2) + finite total curvature ⇒ catenoid. Theorem 8 (L´ opez-Ros, JDG 1991) M ∈ M C (0 , k ) + finite total curvature ⇒ plane, catenoid. Theorem 9 (Costa, Inventiones 1991) M ∈ M C (1 , 3) + finite total curvature ⇒ M deformed Costa-Hoffman-Meeks (1-parameter family). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 5 / 16

  9. 2 ≤ # E ( M ) = k < ∞ : The Hoffman-Meeks Conjecture Conjecture 1 If M ∈ M C ( g , k ) + finite total curvature (FTC) = ⇒ k ≤ g + 2 . Theorem 10 (Meeks-P-Ros, 2016) Given g ∈ N , ∃ C = C ( g ) ∈ N s.t. k ≤ C ( g ) , ∀ M ∈ M C ( g , k ) . � � � M ⊂ R 3 minimal surface, f ∈ C ∞ d 2 0 ( M ) ⇒ 0 Area( M + tfN ) = − M f Lf dA , � dt 2 L = ∆ − 2 K (Jacobi operator). Ω ⊂⊂ M . Index(Ω) = # { negative eigenvalues of L for Dirichlet problem on Ω } Index( M ) = sup { Index( L , Ω) | Ω ⊂⊂ M } . If M complete, then FTC ⇔ Index( M ) < ∞ (Fischer-Colbrie) If M ∈ M C ( g , k ) FTC ⇒ Index( M )= Index (∆ + �∇ N � 2 ) on compactification M g φ : M → S 2 holom map on M cpt ⇒ Index(∆ + �∇ φ � 2 ) < 7 . 7 deg( φ ) (Tysk) If M ∈ M C ( g , k ) has FTC ⇒ deg( N ) = g + k − 1 (Jorge-Meeks) Corollary 1 (Meeks-P-Ros, 2016) Given g ∈ N , ∃ C 1 = C 1 ( g ) ∈ N s.t. Index ( M ) ≤ C 1 ( g ) , ∀ M ∈ M C ( g , k ) . Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 6 / 16

  10. # E ( M ) = ∞ : EMS with infinite topology Riemann (1867) Hauswirth-Pacard (2007) Traizet (2012) g = ∞ Definition 2 E ( M ) ֒ → [0 , 1] embedding. e ∈ E ( M ) simple end if e isolated in E ( M ). e ∈ E ( M ) limit end if not isolated. Theorem 11 (Collin-Kusner-Meeks-Rosenberg, JDG 2004) If M ∈ M P ( g , ∞ ) ⇒ M has at most two limit ends (top and/or bottom). Theorem 12 (Hauswirth-Pacard, Inventiones 2007) If 1 ≤ g ≤ 37 ⇒ M P ( g , ∞ ) � = Ø (g ≥ 38 Morabito IUMJ 2008). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 7 / 16

  11. # E ( M ) = ∞ : EMS with infinite topology Theorem 13 (Meeks-P-Ros, Inventiones 2004) If M ∈ M P ( g , ∞ ) , g < ∞ ⇒ M cannot have just 1 limit end. Theorem 14 (Meeks-P-Ros, Annals 2015) M P (0 , ∞ ) = { Riemann minimal examples } . If M ∈ M P ( g , ∞ ) , g < ∞ (two limit ends) ⇒ simple (middle) ends are asymptotic to planes, and limit ends are asymptotic to Riemann limit ends (conformally parabolic) Theorem 15 (Traizet, IUMJ 2012) ∃ M ⊂ R 3 CEMS with infinite genus and 1 limit end, all whose simple ends are asymptotic to half-catenoids. Theorem 16 (Meeks-P-Ros, 2018, Calabi-Yau for finite genus ) If M ∈ M C ( g , ∞ ) countably many limit ends ⇒ M ∈ M P , exactly 2 limit ends, conformally parabolic. Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 8 / 16

  12. Limits of EMS open ⊂ R 3 } n emb min surf (EMS), ∂ M n cpt (possibly empty). { M n ⊂ A Classical limits (Arzel´ a-Ascoli) Locally bded curvature + Area( M n ) locally unifly bded + ∃ accumulation point subseq ⇒ { M n } n → M ∞ EMS inside A , with finite multiplicity. Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005) subseq Locally bded curv + ∃ accum point ⇒ { M n } n → L ∞ minimal lamination of A (closed union of disjoint EMS, called leaves). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 9 / 16

  13. Limits of EMS open ⊂ R 3 } n emb min surf (EMS), ∂ M n cpt (possibly empty). { M n ⊂ A Classical limits (Arzel´ a-Ascoli) Locally bded curvature + Area( M n ) locally unifly bded + ∃ accumulation point subseq ⇒ { M n } n → M ∞ EMS inside A , with finite multiplicity. Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005) subseq Locally bded curv + ∃ accum point ⇒ { M n } n → L ∞ minimal lamination of A (closed union of disjoint EMS, called leaves). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 9 / 16

  14. Limits of EMS open ⊂ R 3 } n emb min surf (EMS), ∂ M n cpt (possibly empty). { M n ⊂ A Classical limits (Arzel´ a-Ascoli) Locally bded curvature + Area( M n ) locally unifly bded + ∃ accumulation point subseq ⇒ { M n } n → M ∞ EMS inside A , with finite multiplicity. Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005) subseq Locally bded curv + ∃ accum point ⇒ { M n } n → L ∞ minimal lamination of A (closed union of disjoint EMS, called leaves). 1 U β L C β 0 ϕ β D Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 9 / 16

  15. Limits of EMS open ⊂ R 3 } n emb min surf (EMS), ∂ M n cpt (possibly empty). { M n ⊂ A Classical limits (Arzel´ a-Ascoli) Locally bded curvature + Area( M n ) locally unifly bded + ∃ accumulation point subseq ⇒ { M n } n → M ∞ EMS inside A , with finite multiplicity. Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005) subseq Locally bded curv + ∃ accum point ⇒ { M n } n → L ∞ minimal lamination of A (closed union of disjoint EMS, called leaves). � � � S = x ∈ A | sup | K M n ∩ B ( x , r ) | → ∞ , ∀ r > 0 . Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 9 / 16

Recommend


More recommend