algebraic and combinatorial methods for bounding the
play

Algebraic and combinatorial methods for bounding the number of the - PowerPoint PPT Presentation

Algebraic and combinatorial methods for bounding the number of the complex embeddings of minimally rigid graphs E. Bartzos, I.Z. Emiris, J. Schicho 14 June 2019 Geometric constraint systems: rigidity, flexibility and applications Lancaster


  1. Algebraic and combinatorial methods for bounding the number of the complex embeddings of minimally rigid graphs E. Bartzos, I.Z. Emiris, J. Schicho 14 June 2019 Geometric constraint systems: rigidity, flexibility and applications Lancaster University A R C A D E S

  2. Counting realizations – Existing work • Number of realizations and asymptotic bounds ▶ Complex embeddings for Laman graphs (Capko, Gallet, Grasseger, Koutschan, Lubbes, Schicho) ▶ Complex embeddings for Geiringer graphs and asymptotic lower bounds (Grasegger, Koutschan, Tsigaridas) ▶ Upper bounds (Borcea, Streinu) ▶ Mixed volume methods for Geiringer and Laman graphs(Emiris, Tsigaridas, Varvitsiotis) ▶ Real embeddings for Geiringer and Laman graphs and real bounds for specific graphs (EB, Emiris, Legersky, Tsigaridas) 1

  3. Bounds on the number of complex solutions • Fast computation methods • Homotopy continuation solvers • Tight upper bounds on the number of realizations • Asymptotic upper bounds 2

  4. Bézout bound – Projective & multi-projective case Bézout bound : ∏ m i = 1 deg ( f i ) 3

  5. Bézout bound – Projective & multi-projective case Bézout bound : ∏ m i = 1 deg ( f i ) Multihomogeneous Bézout bound : Let X 1 , X 2 , . . . , X k be a partition of the m variables, m i = | X i | and d ij be the degree of the i-th equation in th j-th set of variables. Then the number of solutions of the system is bounded from above by the coefficient of · · · X m k the monomial X m 1 · X m 2 in the polynomial 1 2 k m ∏ ( d i 1 · X 1 + d i 2 · X 2 + . . . d ik · X k ) i = 1 3

  6. Bézout bound – Projective & multi-projective case Bézout bound : ∏ m i = 1 deg ( f i ) Multihomogeneous Bézout bound : Let X 1 , X 2 , . . . , X k be a partition of the m variables, m i = | X i | and d ij be the degree of the i-th equation in th j-th set of variables. Then the number of solutions of the system is bounded from above by the coefficient of · · · X m k the monomial X m 1 · X m 2 in the polynomial 1 2 k m ∏ ( d i 1 · X 1 + d i 2 · X 2 + . . . d ik · X k ) i = 1 Example: f = xy − 1, g = x 2 − 1 Bézout = 4 coeff ( XY , ( X + Y ) · ( 2 X )) = 2 3

  7. Newton polytopes and mixed volumes Definition (Newton polytope) Let f be a polynomial in C [ x 1 , . . . , x n ] such that f = Σ c a x a , where x a = x a 1 1 · x a 2 2 . . . x a n n . The Newton polytope of f is the convex hull of the set of the exponents of the monomials with non-zero coefficients. 4

  8. Newton polytopes and mixed volumes Definition (Newton polytope) Let f be a polynomial in C [ x 1 , . . . , x n ] such that f = Σ c a x a , where x a = x a 1 1 · x a 2 2 . . . x a n n . The Newton polytope of f is the convex hull of the set of the exponents of the monomials with non-zero coefficients. y Example: 3 f = x 3 y + y 3 − 2 xy + 5 x − 3 2 S = { ( 3 , 1 ) , ( 0 , 3 ) , ( 1 , 1 ) , ( 1 , 0 ) , ( 0 , 0 ) } 1 NP ( F ) = ConvHull ( S ) x 0 1 2 3 4

  9. Newton polytopes and mixed volumes Minkowski addition P 1 + P 2 = { p 1 + p 2 | p 1 ∈ P 1 , p 2 ∈ P 2 } y 3 2 P 1 y 1 5 x 0 4 1 2 3 3 y P 1 + P 2 2 3 1 2 x 0 P 2 1 1 2 3 4 5 6 x 0 1 2 3 5

  10. Newton polytopes and mixed volumes Mixed volume MV ( P 1 , P 2 , . . . , P n ) is the coefficient of λ 1 · λ 2 . . . λ n in the homogeneous polynomial Vol n ( λ 1 P 1 + λ 2 P 2 + · · · + λ n P n ) 6

  11. Newton polytopes and mixed volumes Mixed volume MV ( P 1 , P 2 , . . . , P n ) is the coefficient of λ 1 · λ 2 . . . λ n in the homogeneous polynomial Vol n ( λ 1 P 1 + λ 2 P 2 + · · · + λ n P n ) Theorem (Bernstein, Khovanskii, Kushnirenko) The number of roots of a system of polynomials f 1 , f 2 , . . . , f n in ( C ∗ ) n is bounded from above by the mixed volume of the Newton polytopes of these polynomials. 6

  12. Relations between complex bounds # complex solutions ≤ Mixed Volume ≤ m-Bézout ≤ Bézout 7

  13. Relations between complex bounds # complex solutions ≤ Mixed Volume ≤ m-Bézout ≤ Bézout • Mixed volume is tight for generic coefficients. • MV = Bézout for simplices. • MV = m-Bézout subsets of boxes { 0 , d 1 } × { 0 , d 2 } × · · · × { 0 , d n } , that verify maximum degree for all the sets of the monomials. y y f 2 = x + y 2 x + y 2 + 5 2 f 1 = x 2 + y 2 − 3 2 1 1 x x 0 0 1 2 1 2 7

  14. Algebraic Modelling – Sphere equations Fix coordinates of an edge (2d and S 2 case) or a triangle (3d case) to remove rigid motions. ∥ X u − X v ∥ 2 = λ 2 uv ∀ uv ∈ E , • c ∗ ( G ) = # of complex embeddings Introduce sphere equations ∥ X u ∥ 2 = s u ∀ u ∈ V , s u + s v − 2 ⟨ X u , X v ⟩ = λ 2 uv ∀ uv ∈ E , • s u = const. in the case of S n • Structure of equations leads to sharper complex bounds. 8

  15. m-Bézout bound for sphere equations ∥ X u ∥ 2 = s u ∀ u ∈ V , s u + s v − 2 ⟨ X u , X v ⟩ = λ 2 uv ∀ uv ∈ E , (natural) partition of variables: X i = { x i 1 , . . . , x i d , s i } m-Bézout for minimally rigid graphs: | E ′ | n − d ∏ ∏ 2 X i · ( X k 1 + X k 2 ) i = 1 k = 1 where E ′ = E − { simplex } . We need to compute the coefficient of X d + 1 · X d + 1 · · · X d + 1 . 1 2 n 9

  16. m-Bézout bound for sphere equations ∥ X u ∥ 2 = s u ∀ u ∈ V , s u + s v − 2 ⟨ X u , X v ⟩ = λ 2 uv ∀ uv ∈ E , (natural) partition of variables: X i = { x i 1 , . . . , x i d , s i } product for edge equations: | E ′ | (˜ X k 1 + ˜ ∏ X k 2 ) k = 1 We need to compute the coefficient of ˜ 1 · ˜ 2 · · · ˜ X d X d X d n . The m-Bézout bound is 2 n − d · coeff. 9

  17. Combinatorial Algorithm for m-Bézout bound Theorem Let H ( V , E ′ ) be a graph obtained after removing the fixed ( d − 1 ) − simplex from G ( V , E ) . We define H as the set of all directed graphs such that if we remove the orientation, they coincide with H and each non-fixed vertex has indegree d. Then, the coefficient of the monomial ˜ 1 · ˜ 2 · · · ˜ X d X d X d m of the previous product is exactly the same as |H| . 10

  18. Combinatorial Algorithm for m-Bézout bound 2 orientations ∗ 2 6 − 2 = 32 11

  19. Combinatorial Algorithm for m-Bézout bound 2 orientations ∗ 2 6 − 2 = 32 c 2 ( G ) = 24 , c S 2 ( G ) = 32 11

  20. Permanent of a matrix as m-Bézout bound ( 1 , 3 ) ( 2 , 3 ) ( 1 , 5 ) ( 2 , 6 ) ( 3 , 4 ) ( 4 , 5 ) ( 4 , 6 ) ( 5 , 6 ) 1 1 0 0 1 0 0 0 x 3 1 1 0 0 1 0 0 0 y 3 0 0 0 0 1 1 1 0 x 4 0 0 0 0 1 1 1 0 y 4 0 0 1 0 0 1 0 1 x 5 0 0 1 0 0 1 0 1 y 5 0 0 0 1 0 0 1 1 x 6 0 0 0 1 0 0 1 1 y 6 12

  21. Permanent of a matrix as m-Bézout bound m ( − 1 ) m −| M | ∑ ∏ ∑ per ( A ) = (1) a ij i = 1 j ∈ M M ⊆{ 1 , 2 ,..., m } What is interesting for us is that there is a relation between the per ( A ) and the m-Bézout bound: Theorem 1 m-Bézout = m 1 ! m 2 ! . . . m k ! · per ( A ) In the case of sphere equations we get the following: ( 2 ) n − d · per ( A ) d ! • Current asymptotic bounds for permanent do not ameliorate Bézout bounds. 13

  22. Runtimes n Laman graphs comb. MV Maple ’s m-Bézout c 2 ( G ) permanent phcpy Python 6 0.0096s 0.0242s 0.114s 0.0123s 7 0.01526s 0.104s 0.12s 0.0152s 8 0.0276s 0.163s 0.138s 0.0431s 9 0.066s 0.397s 0.26s 0.076s 10 0.1764s 1.17s 0.302s 0.148s 11 0.5576s 2.84s 0.4s 0.2761s 12 6.35995s 11.7s 0.897s 0.5623s 18 17h 5min 27s 3h* 454.5s 6.84s 14

  23. Runtimes n Geiringer graphs MV Maple ’s m-Bézout phcpy solver permanent phcpy Python 6 0.652s 0.107s 0.113 0.0098s 7 3.01s 0.175s 0.256 0.02s 8 20.1s 3.48s 0.359 0.0492s 9 2min 33s 2 min 16s 0.406s 0.149s 10 16min 1s 1h 58min 16s 1.127s 0.338s 11 2h 13min 51s > 1.5 day 3.033s 0.442s 12 - >6 days* 32.079s 1.3s • Can we find an optimal simplex? 14

  24. Relation between m-Bézout bound and mixed volume and num- ber of complex embeddings • Mixed volume= m-Bézout bound in almost every example. • Mixed volume= m-Bézout in every reduced edge equation system ⟨ X u , X v ⟩ = const . ∀ uv ∈ E . • Missing terms from the m-Bézout Newton polytope for Laman graphs: x u + y u + x v + y v + x u · y v + y u · x v + x u · x v + y u · y v = const . 15

  25. Comparing m-Bézout bound and the c ( G ) • Spatial embeddings=m-Bézout bound for every planar minimally rigid graph in C 3 . • Spherical embeddings for planar graphs. n mBézout c 2 ( G ) c S 2 ( G ) 6 32 24 32 7 64 56 64 8 192 136 192 9 512 344 512 10 1536 880 1536 11 4096 2288 4096 12 15630 6180 8704 16

  26. Determinantal conditions for mixed volume Definition (Polytope intersections & Initial forms) Let S and w be respectively a polytope and a non-zero vector in R n . We denote the subset of S that minimizes the inner product ⟨· , w ⟩ as S w . c q x q in the direction of w The initial form of a polynomial f = ∑ q ∈ S is f w = q ∈ S w c q x q . ∑ Theorem (Bernstein’s second theorem) The number of roots of a system of polynomials f 1 , f 2 , . . . , f n in ( C ∗ ) n is exactly mixed volume of their Newton polytopes iff ∀ α ∈ R n the system f w 1 , f w 2 , . . . , f w has no solutions in ( C ∗ ) n . n 17

  27. Exactness of m-Bézout bound • The determinantal conditions can be verified by checking all the w ∈ R n that are inner normals of the faces of P 1 + P 2 + · · · + P n . • Normals of the facets and a subset of their linear combinations. 18

Recommend


More recommend