alfio lomb alfio lombard ardo o anto tonio manzalini
play

Alfio Lomb Alfio Lombard ardo o Anto tonio Manzalini Vincenzo - PowerPoint PPT Presentation

Alfio Lomb Alfio Lombard ardo o Anto tonio Manzalini Vincenzo Vincenzo Ricco iccobene ene Telecom Italia Gio Giova vanni nni Sc Sche hemb mbra Strategy Future Centre DIEEI University of Catania Pa Paper er moti tivati


  1. Alfio Lomb Alfio Lombard ardo o Anto tonio Manzalini Vincenzo Vincenzo Ricco iccobene ene Telecom Italia Gio Giova vanni nni Sc Sche hemb mbra Strategy Future Centre DIEEI – University of Catania

  2. � Pa Paper er moti tivati tion an and d ref referen erence ce s scen cenario ario � Netw twork analyti tical fr framewo mework ◦ Model of an NFV node ◦ Model of a non-NFV node ◦ Model of the whole network ◦ Derivation of performance parameters � Case Case stu tudy � Conclusions Conclusions and futu ture work

  3. � Service Providers and Netw twork Operato tors ne need: ◦ Flexibility in network deployment and management ◦ A flexible and optimal provisioning of network functions and services could reduce equipment costs and allow to postpone network investments ◦ New network functionalities, services and policies to increase dynamicity of the market ◦ Reducing OPEX and CAPEX

  4. � SDN DN: Softw tware De Defined Netw tworks ◦ Decoupling the software control plane from the hardware data plane (packets forwarding), and moving its logic to centralized controllers � NFV: Netw twork Functi tion Virtu tualizati tion ◦ Virtualization of some network functions that can run on standard HW, and that can be moved and instantiated in various locations of the network

  5. Current Current approach approach ≡

  6. NFV NFV approach approach Virtual machines ≡ General purpose server Data center

  7. NFV NFV approach approach Virtual machines ≡ General purpose server Data center

  8. Virtual machines � An An “NFV “NFV no node” ” is is characte terized by by: : ◦ A standard hardware architecture (x86 commodity hardware) ◦ A virtualization capable software architecture ◦ A set of Virtual Machines (VMs) that run Network Functions (e.g. Routers, Firewalls, Load Balancer, ...) VM VM VM 2 3 1 Software Layer Hardware Layer

  9. � Analy Analysis sis of th the impact t of th the Netw twork Functi tion allocati tion � An An analyti tical fr framewo mework fo for 
 perf perform orman ance ce evaluati tion of of 
 th the netw twork

  10. E2e path for each flow Routing Analytical Protocol Model ◦ Network topology ◦ Performance parameters ◦ Network Function allocation ◦ Traffic characterization

  11. � Let t us consider th the netw twork represente ted by a directe ted graph G ( V, E ), whe where: ◦ V is a set of vertices ◦ E is a set of links among them � Let t F be th the set t of functi tions deployed over th the netw twork

  12. � User tr traffic is represente ted by a set t S of of f flow lows, , each characte terized by th the following ite tems: ◦ ∈ V is the vertex that represents the source of σ s the flow s ◦ ∈ V is the vertex that represents the destination δ s of the flow s ◦ f s is the mean bit rate characterizing the flow s ◦ func s is the set of functions required by the flow s

  13. NFV node ( OUT ) Λ ( OUT ) Q ( F ) i , 1 i , 1 ( F ) Λ Q non-NFV node i , 1 i , 1 ( OUT ) ( OUT ) Q Λ ( F ) i , 2 i , 2 ( F ) ( OUT ) Λ Q Λ ( OUT ) Q i , 2 i , 2 i , 1 i , 1 CPU ( OUT ) ( OUT ) Q ( OUT ) ( F ) Λ ( F ) ( OUT ) Q Q Λ Λ i , 2 i , 2 i , j i , j i , h i , h ( OUT ) ( F ) ( F ) Q Λ Λ ( OUT ) ( OUT ) Q ( OUT ) ( F ) ( OUT ) Q Λ i , L i , L ( F ) i , L i i ( OUT ) i , h i , L i , h i i ( OUT ) ( OUT ) Q Λ ( OUT ) i , L ( OUT ) i , L i i

  14. An NFV node can be modeled as a set of queues, that belong to two categories: NFV node Q ( F ) • Functi tions Queue Queue i , j ( OUT ) Λ ( OUT ) Q � They manage the access to ( F ) i , 1 i , 1 ( F ) Λ Q i , 1 i , 1 the functions ( OUT ) � Their service rate depends ( OUT ) Q Λ ( F ) i , 2 i , 2 ( F ) Λ Q on the CPU processing i , 2 i , 2 CPU s p e e d t o p r o c e s s t h e relative function ( OUT ) ( F ) ( F ) ( OUT ) Q Q Λ Λ i , j i , j i , h i , h • Outp tput t qu queu eues es Q ( OUT ) i , h ( OUT ) ( F ) ( F ) � They manage the packet Q Λ Λ ( OUT ) Q ( F ) ( OUT ) i , L i , L ( F ) i , L i i ( OUT ) transmission on the output i , L i i links � Their service rate depends on the output bitrate

  15. Functi tion Queues Queues NFV node ( F ) ∑ Arrival Λ = λ i , j k Rate ( OUT ) k ∀ ∈ Φ Λ ( OUT ) Q i , j ( F ) i , 1 i , 1 ( F ) Λ Q i , 1 i , 1 ( F ) p ⋅ C ( CPU ) Service µ = ( OUT ) ( OUT ) Q i , j i , j i Λ ( F ) Rate i , 2 i , 2 ( F ) Λ Q i , 2 i , 2 CPU Outp tput t Queues Queues ( OUT ) ( F ) ( F ) ( OUT ) Q Q Λ Λ i , j i , j i , h i , h Arrival ( OUT ) ∑ Λ = λ i , h k Rate k ( OUT ) ∀ ∈ Ψ ( F ) i , h ( F ) Q Λ Λ ( OUT ) Q ( F ) ( OUT ) i , L i , L ( F ) i , L i i ( OUT ) i , L Service i i ( OUT ) C ( NIC ) µ = Rate i , h i , h

  16. node i and requiring the function j : set of flows routed through the Φ i , j Functi tion Queues Queues NFV node Arrival ( F ) ∑ Λ = λ Rate i , j k ( OUT ) k ∀ ∈ Φ Λ ( OUT ) Q i , j ( F ) i , 1 i , 1 ( F ) Λ Q Service i , 1 i , 1 ( F ) p ⋅ C ( CPU ) µ = Rate ( OUT ) ( OUT ) Q i , j i , j i Λ ( F ) i , 2 i , 2 ( F ) Λ Q i , 2 i , 2 CPU Outp tput t Queues Queues ( OUT ) ( F ) ( F ) ( OUT ) Q Q Λ Λ i , j i , j i , h Arrival i , h ( OUT ) ∑ Λ = λ Rate i , h k k ( OUT ) ∀ ∈ Ψ ( F ) i , h ( F ) Q Λ Λ ( OUT ) Q ( F ) ( OUT ) i , L i , L ( F ) i , L i i ( OUT ) Service i , L i i ( OUT ) C ( NIC ) µ = Rate i , h i , h

  17. p , assigned to VM (function) j : the CPU quota of i-th node i j Functi tion Queues Queues NFV node Arrival ( F ) ∑ Λ = λ Rate i , j k ( OUT ) k ∀ ∈ Φ Λ ( OUT ) Q i , j ( F ) i , 1 i , 1 ( F ) Λ Q Service i , 1 i , 1 ( F ) p ⋅ C ( CPU ) µ = Rate ( OUT ) ( OUT ) Q i , j i , j i Λ ( F ) i , 2 i , 2 ( F ) Λ Q i , 2 i , 2 CPU Outp tput t Queues Queues ( OUT ) ( F ) ( F ) ( OUT ) Q Q Λ Λ : the mean packet processing rate C ( CPU ) i , j i , j i , h Arrival i , h i of the processor in the i -th NFV node ( OUT ) ∑ Λ = λ Rate i , h k k ( OUT ) ∀ ∈ Ψ ( F ) i , h ( F ) Q Λ Λ ( OUT ) Q ( F ) ( OUT ) i , L i , L ( F ) i , L i i ( OUT ) Service i , L i i ( OUT ) C ( NIC ) µ = Rate i , h i , h

  18. : the set of flows crossing the node Ψ i , h i and leaving it through the NIC h Functi tion Queues Queues NFV node Arrival ( F ) ∑ Λ = λ Rate i , j k ( OUT ) k ∀ ∈ Φ Λ ( OUT ) Q i , j ( F ) i , 1 i , 1 ( F ) Λ Q Service i , 1 i , 1 ( F ) p ⋅ C ( CPU ) C : the transmission rate of the h -th ( NIC ) µ = Rate i , h ( OUT ) ( OUT ) Q i , j i , j i Λ output link of the i -th NFV node ( F ) i , 2 i , 2 ( F ) Λ Q i , 2 i , 2 CPU Outp tput t Queues Queues ( OUT ) ( F ) ( F ) ( OUT ) Q Q Λ Λ i , j i , j i , h Arrival i , h ( OUT ) ∑ Λ = λ Rate i , h k k ( OUT ) ∀ ∈ Ψ ( F ) i , h ( F ) Q Λ Λ ( OUT ) Q ( F ) ( OUT ) i , L i , L ( F ) i , L i i ( OUT ) Service i , L i i ( OUT ) C ( NIC ) µ = Rate i , h i , h

  19. A non-NFV node can be non-NFV node modeled as a set of output queues, one for each output ( OUT ) link Λ ( OUT ) Q i , 1 i , 1 ( OUT ) ( OUT ) Q Λ i , 2 i , 2 Outp tput t Queues Queues ( OUT ) Arrival ( OUT ) Q Λ ( OUT ) ∑ Λ = λ i , h i , h i , h k Rate k ∀ ∈ Ψ i , h Service ( OUT ) ( OUT ) Q Λ ( OUT ) C ( NIC ) µ = ( OUT ) i , L ( OUT ) Rate i , L i i , h i , h i

  20. � The whole netw twork can be modeled as a netw twork of queues � Model definiti tion: an N -dimensional conti tinuous- time Markov chain whose sta ti tate te is defined as follo fo llows: ws: ( ) ( ) … S ( t ) S ( t ), , S ( t ) Σ = 1 N where is equal to: S i ( t ) ( ) (NFV Node) - S ( t ) S ( F ) ( t ), … , S ( F ) ( t ), S ( OUT ) ( t ), … , S ( OUT ) ( t ) = i i , 1 ( F ) i , 1 ( OUT ) i , L i , L i i ( ) (non-NFV Node) … - S ( t ) S ( OUT ) ( t ), , S ( OUT ) ( t ) = i , 1 ( OUT ) i i , L i

Recommend


More recommend