Air Tuner 201 MHz MICE Cavity Luca Somaschini INFN - PISA
Sing Single le C Cavity Module vity Module Tuning System: Tuning System: - 6 Forks per cavity - Controlled by 6 pneumatic actuators Luca Somaschini - INFN Pisa 2
Sing Single le C Cavity Module vity Module Luca Somaschini - INFN Pisa 3
Sing Single le C Cavity Module vity Module Tuning System: Tuning System: - Forks will be in vacuum - Actuators will be outside vacuum vessel Luca Somaschini - INFN Pisa 4
Sing Single le C Cavity Module vity Module Luca Somaschini - INFN Pisa 5
Test Sta st Stand nd - Proportional Valves - LabViev ModBus controller - One set of valves for all 6 pistons Luca Somaschini - INFN Pisa 6
Test Sta st Stand nd Test Stand: -Hoop to simulate the response of the cavity Luca Somaschini - INFN Pisa 7
Me Measur surements nts Goal(s) Goal(s) – Already Achieved: Already Achieved: - Write a control software (LabView) - Check for a uniform response of all 6 actuators - Calibrate the control system: P vs Deflection curve Luca Somaschini - INFN Pisa 8
Me Measur surements nts 1) Deflection: 1) Deflection: - Test hoop deflection measured with a dial gauge. Luca Somaschini - INFN Pisa 9
Me Measur surements nts 1) Deflection: 1) Deflection: - Test hoop deflection measured z ¡ with a dial gauge. Luca Somaschini - INFN Pisa 10
Me Measur surements nts Luca Somaschini - INFN Pisa 11
Me Measur surements nts 2) 2) Δ∇ Δ∇ x Gap: Gap: - Fork gap Variation measured with a lineal potentiometer - Readout with NI ADC and LabView - Voltage output converted into mm. Luca Somaschini - INFN Pisa 12
Me Measur surements nts 2) 2) Δ∇ Δ∇ x Gap: Gap: - Fork gap Variation measured with a lineal potentiometer - Readout with NI ADC and LabView - Voltage output converted into mm. Luca Somaschini - INFN Pisa 13
Me Measur surements nts 3) Pressure: 3) Pressure: - Pressure measured directly from ModBus controllers read-out. Luca Somaschini - INFN Pisa 14
Rang nges a s and Se nd Sensitivity nsitivity Ranges ¡Results ¡ Pressure ¡(PSI) ¡ Deflec4on ¡(mm) ¡ Transducer ¡(V) ¡ Gap ¡(mm) ¡ Range ¡ ± ¡80 ¡ ± ¡1.78 ¡ ± ¡0.787 ¡ ± ¡4.002 ¡ Mean ¡Error ¡ 1.5 ¡ 1.3E-‑02 ¡ 4E-‑03 ¡ 8E-‑03 ¡ We have a good resolution We have a good resolution Luca Somaschini - INFN Pisa 15
Sing Single le A Actua tuator A tor Ana naly lysis sis - We consider the example of one We consider the example of one actuator actuator - All other actuator behave similarly All other actuator behave similarly Luca Somaschini - INFN Pisa 16
Sing Single le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Complete Cycle Actuator 5 - Complete Cycle Deflection (mm) 1) Hysteresis: 1) Hysteresis: 2 1.5 - Data show a small 1 hysteresis (+/- 0.3 mm) 0.5 0 - If the cycle is repeated -0.5 it overlaps the previous one -1 -1.5 2) Slopes: 2) Slopes: -2 -80 -60 -40 -20 0 20 40 60 80 Pressure (PSI) - Slopes obtained by pushing and pulling are 17 different Luca Somaschini - INFN Pisa
Sing Single le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Complete Cycle Actuator 5 - Complete Cycle x Gap (mm) 1) Hysteresis: 1) Hysteresis: 4 � - Also this variables 2 show a small hysteresis 0 -2 2) Slopes: 2) Slopes: -4 - Slopes obtained by -80 -60 -40 -20 0 20 40 60 80 Pressure (PSI) pushing and pulling are still different Luca Somaschini - INFN Pisa 18
Sing Single le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Complete Cycle Actuator 5 - Complete Cycle Deflection (mm) 1) Hysteresis: 1) Hysteresis: 2 1.5 - The cycle area is 1 significantly smaller 0.5 0 2) Slopes: 2) Slopes: -0.5 -1 - Same slope for pushing -1.5 and pulling -2 -4 -2 0 2 4 x Gap (mm) � Hysteresis is not due to fork Hysteresis is not due to fork – hoop and and seems hoop and and seems to depend on the actuator to depend on the actuator Luca Somaschini - INFN Pisa 19
Sing Single le A Actua tuator A tor Ana naly lysis sis Let’s now consider the mean value of each Let’s now consider the mean value of each hysteresis cycle branch hysteresis cycle branch Luca Somaschini - INFN Pisa 20
Single Sing le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Mean 2.5 2 2 / ndf / ndf � � 0.3835 / 7 0.3835 / 7 Deflection (mm) Slopes: Slopes: p0 p0 0.04198 0.04198 ± ± 0.03101 0.03101 2 p1 p1 0.02221 0.02221 0.0006052 0.0006052 ± ± 1.5 - As expected the two 1 slopes are slightly 0.5 different 0 -0.5 - 13% of difference -1 2 2 / ndf / ndf � � 0.471 / 7 0.471 / 7 -1.5 p0 p0 0.01393 0.01393 0.03171 0.03171 ± ± -2 p1 p1 -0.02529 -0.02529 ± ± 0.0005479 0.0005479 -2.5 0 10 20 30 40 50 60 70 80 Pressure (PSI) Luca Somaschini - INFN Pisa 21
Sing Single le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Mean 5 2 2 / ndf / ndf � � 0.3973 / 7 0.3973 / 7 x Gap (mm) Slopes: Slopes: p0 p0 -0.03366 -0.03366 0.05654 0.05654 ± ± 4 p1 p1 0.05634 0.05634 0.00104 0.00104 ± ± 3 � - As expected also these 2 two slopes are slightly 1 different 0 -1 - 12% of difference -2 2 2 � � / ndf / ndf 0.9804 / 7 0.9804 / 7 -3 p0 p0 -0.1036 -0.1036 ± ± 0.05293 0.05293 -4 p1 p1 -0.05007 -0.05007 0.001058 0.001058 ± ± -5 0 10 20 30 40 50 60 70 80 Pressure (PSI) Luca Somaschini - INFN Pisa 22
Single Sing le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Mean 2 2 / ndf / ndf � � 0.05184 / 7 0.05184 / 7 Deflection (mm) Slopes: Slopes: 2 p0 p0 -0.006131 -0.006131 0.03625 0.03625 ± ± p1 p1 -0.4442 -0.4442 0.01331 0.01331 ± ± 1.5 - Slopes are comparable 1 0.5 - 0.3% of difference 0 -0.5 - Slope difference seems -1 2 2 � � / ndf / ndf 0.09205 / 6 0.09205 / 6 to depend on the -1.5 p0 p0 0.001456 0.001456 0.04001 0.04001 ± ± actuators p1 p1 -0.4495 -0.4495 0.009483 0.009483 ± ± -2 -10 -8 -6 -4 -2 0 2 4 6 8 10 � x Gap (mm) Luca Somaschini - INFN Pisa 23
Gr Group B oup Beha haviour viour Let’s consider the overall behavior by Let’s consider the overall behavior by comparing the slopes of all actuators comparing the slopes of all actuators Luca Somaschini - INFN Pisa 24
Gr Group B oup Beha haviour viour P vs Deflection - Squeeze P vs Deflection - Squeeze -0.02 2 2 / ndf / ndf � � 0.275 / 5 0.275 / 5 Slope (mm/PSI) Squeeze: Squeeze: p0 p0 -0.02541 -0.02541 0.0002218 0.0002218 ± ± -0.021 -0.022 - Pistons behave VERY -0.023 uniformly -0.024 -0.025 -0.026 -0.027 -0.028 -0.029 -0.03 0 1 2 3 4 5 6 Actuator Number Luca Somaschini - INFN Pisa 25
Gr Group B oup Beha haviour viour P vs Deflection - Stretch P vs Deflection - Stretch 0.028 2 2 / ndf / ndf � � 1.975 / 5 1.975 / 5 Slope (mm/PSI) Stretch: Stretch: p0 p0 0.0226 0.0226 0.0002038 0.0002038 ± ± 0.027 0.026 - Pistons do not behave 0.025 so uniformly 0.024 0.023 - PropValves have been 0.022 0.021 swapped -> doesn’t 0.02 depend on valves 0.019 0.018 0 1 2 3 4 5 6 Actuator Number How bad is this difference? How bad is this difference? Let’s have a closer look Let’s have a closer look Luca Somaschini - INFN Pisa 26
Group B Gr oup Beha haviour viour P vs Deflection - Stretch P vs Deflection - Stretch 0.028 2 2 / ndf / ndf 1.975 / 5 1.975 / 5 � � Slope (mm/PSI) p0 p0 0.0226 0.0226 ± ± 0.0002038 0.0002038 0.027 0.026 0.025 0.024 0.023 0.022 0.021 0.02 0.019 0.018 0 1 2 3 4 5 6 Actuator Number Δ S = S max − S min ≈ 0.0011 mm / PSI Δ Deflecton = 0,11 mm @100 PSI Δ Deflecton = 5% Luca Somaschini - INFN Pisa 27
Gr Group B oup Beha haviour viour Squeezing Slope: 0.02541 mm/PSI Squeezing Slope: 0.02541 mm/PSI Stretching Slope: 0.0226 mm/PSI Stretching Slope: 0.0226 mm/PSI Slopes are different but it’s not a problem Slopes are different but it’s not a problem These are obtained with two different pneumatic These are obtained with two different pneumatic circuits circuits We simply need to use two different calibrations when We simply need to use two different calibrations when squeezing or stretching squeezing or stretching Luca Somaschini - INFN Pisa 28
Next Ste xt Step: R p: RF T F Test st Control system will be equipped with electronic pressure gauges Luca Somaschini - INFN Pisa 29
Next Ste xt Step: R p: RF T F Test st Control system will be equipped with electronic pressure gauges z ¡ Luca Somaschini - INFN Pisa 30
Next Ste xt Step: R p: RF T F Test st Test in Lab 6: Measurements • RF Parameters: f, Q, S11, S21 (Network Analyser) • Pressure (Remote Pressure gauges) • Fork gap variation (Linear Potentiometers) With copper and beryllium windows Luca Somaschini - INFN Pisa 31
Recommend
More recommend