air tuner
play

Air Tuner 201 MHz MICE Cavity Luca Somaschini INFN - PISA Sing - PowerPoint PPT Presentation

Air Tuner 201 MHz MICE Cavity Luca Somaschini INFN - PISA Sing Single le C Cavity Module vity Module Tuning System: Tuning System: - 6 Forks per cavity - Controlled by 6 pneumatic actuators Luca Somaschini - INFN Pisa 2 Sing Single


  1. Air Tuner 201 MHz MICE Cavity Luca Somaschini INFN - PISA

  2. Sing Single le C Cavity Module vity Module Tuning System: Tuning System: - 6 Forks per cavity - Controlled by 6 pneumatic actuators Luca Somaschini - INFN Pisa 2

  3. Sing Single le C Cavity Module vity Module Luca Somaschini - INFN Pisa 3

  4. Sing Single le C Cavity Module vity Module Tuning System: Tuning System: - Forks will be in vacuum - Actuators will be outside vacuum vessel Luca Somaschini - INFN Pisa 4

  5. Sing Single le C Cavity Module vity Module Luca Somaschini - INFN Pisa 5

  6. Test Sta st Stand nd - Proportional Valves - LabViev ModBus controller - One set of valves for all 6 pistons Luca Somaschini - INFN Pisa 6

  7. Test Sta st Stand nd Test Stand: -Hoop to simulate the response of the cavity Luca Somaschini - INFN Pisa 7

  8. Me Measur surements nts Goal(s) Goal(s) – Already Achieved: Already Achieved: - Write a control software (LabView) - Check for a uniform response of all 6 actuators - Calibrate the control system: P vs Deflection curve Luca Somaschini - INFN Pisa 8

  9. Me Measur surements nts 1) Deflection: 1) Deflection: - Test hoop deflection measured with a dial gauge. Luca Somaschini - INFN Pisa 9

  10. Me Measur surements nts 1) Deflection: 1) Deflection: - Test hoop deflection measured z ¡ with a dial gauge. Luca Somaschini - INFN Pisa 10

  11. Me Measur surements nts Luca Somaschini - INFN Pisa 11

  12. Me Measur surements nts 2) 2) Δ∇ Δ∇ x Gap: Gap: - Fork gap Variation measured with a lineal potentiometer - Readout with NI ADC and LabView - Voltage output converted into mm. Luca Somaschini - INFN Pisa 12

  13. Me Measur surements nts 2) 2) Δ∇ Δ∇ x Gap: Gap: - Fork gap Variation measured with a lineal potentiometer - Readout with NI ADC and LabView - Voltage output converted into mm. Luca Somaschini - INFN Pisa 13

  14. Me Measur surements nts 3) Pressure: 3) Pressure: - Pressure measured directly from ModBus controllers read-out. Luca Somaschini - INFN Pisa 14

  15. Rang nges a s and Se nd Sensitivity nsitivity Ranges ¡Results ¡ Pressure ¡(PSI) ¡ Deflec4on ¡(mm) ¡ Transducer ¡(V) ¡ Gap ¡(mm) ¡ Range ¡ ± ¡80 ¡ ± ¡1.78 ¡ ± ¡0.787 ¡ ± ¡4.002 ¡ Mean ¡Error ¡ 1.5 ¡ 1.3E-­‑02 ¡ 4E-­‑03 ¡ 8E-­‑03 ¡ We have a good resolution We have a good resolution Luca Somaschini - INFN Pisa 15

  16. Sing Single le A Actua tuator A tor Ana naly lysis sis - We consider the example of one We consider the example of one actuator actuator - All other actuator behave similarly All other actuator behave similarly Luca Somaschini - INFN Pisa 16

  17. Sing Single le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Complete Cycle Actuator 5 - Complete Cycle Deflection (mm) 1) Hysteresis: 1) Hysteresis: 2 1.5 - Data show a small 1 hysteresis (+/- 0.3 mm) 0.5 0 - If the cycle is repeated -0.5 it overlaps the previous one -1 -1.5 2) Slopes: 2) Slopes: -2 -80 -60 -40 -20 0 20 40 60 80 Pressure (PSI) - Slopes obtained by pushing and pulling are 17 different Luca Somaschini - INFN Pisa

  18. Sing Single le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Complete Cycle Actuator 5 - Complete Cycle x Gap (mm) 1) Hysteresis: 1) Hysteresis: 4 � - Also this variables 2 show a small hysteresis 0 -2 2) Slopes: 2) Slopes: -4 - Slopes obtained by -80 -60 -40 -20 0 20 40 60 80 Pressure (PSI) pushing and pulling are still different Luca Somaschini - INFN Pisa 18

  19. Sing Single le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Complete Cycle Actuator 5 - Complete Cycle Deflection (mm) 1) Hysteresis: 1) Hysteresis: 2 1.5 - The cycle area is 1 significantly smaller 0.5 0 2) Slopes: 2) Slopes: -0.5 -1 - Same slope for pushing -1.5 and pulling -2 -4 -2 0 2 4 x Gap (mm) � Hysteresis is not due to fork Hysteresis is not due to fork – hoop and and seems hoop and and seems to depend on the actuator to depend on the actuator Luca Somaschini - INFN Pisa 19

  20. Sing Single le A Actua tuator A tor Ana naly lysis sis Let’s now consider the mean value of each Let’s now consider the mean value of each hysteresis cycle branch hysteresis cycle branch Luca Somaschini - INFN Pisa 20

  21. Single Sing le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Mean 2.5 2 2 / ndf / ndf � � 0.3835 / 7 0.3835 / 7 Deflection (mm) Slopes: Slopes: p0 p0 0.04198 0.04198 ± ± 0.03101 0.03101 2 p1 p1 0.02221 0.02221 0.0006052 0.0006052 ± ± 1.5 - As expected the two 1 slopes are slightly 0.5 different 0 -0.5 - 13% of difference -1 2 2 / ndf / ndf � � 0.471 / 7 0.471 / 7 -1.5 p0 p0 0.01393 0.01393 0.03171 0.03171 ± ± -2 p1 p1 -0.02529 -0.02529 ± ± 0.0005479 0.0005479 -2.5 0 10 20 30 40 50 60 70 80 Pressure (PSI) Luca Somaschini - INFN Pisa 21

  22. Sing Single le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Mean 5 2 2 / ndf / ndf � � 0.3973 / 7 0.3973 / 7 x Gap (mm) Slopes: Slopes: p0 p0 -0.03366 -0.03366 0.05654 0.05654 ± ± 4 p1 p1 0.05634 0.05634 0.00104 0.00104 ± ± 3 � - As expected also these 2 two slopes are slightly 1 different 0 -1 - 12% of difference -2 2 2 � � / ndf / ndf 0.9804 / 7 0.9804 / 7 -3 p0 p0 -0.1036 -0.1036 ± ± 0.05293 0.05293 -4 p1 p1 -0.05007 -0.05007 0.001058 0.001058 ± ± -5 0 10 20 30 40 50 60 70 80 Pressure (PSI) Luca Somaschini - INFN Pisa 22

  23. Single Sing le A Actua tuator A tor Ana naly lysis sis Actuator 5 - Mean 2 2 / ndf / ndf � � 0.05184 / 7 0.05184 / 7 Deflection (mm) Slopes: Slopes: 2 p0 p0 -0.006131 -0.006131 0.03625 0.03625 ± ± p1 p1 -0.4442 -0.4442 0.01331 0.01331 ± ± 1.5 - Slopes are comparable 1 0.5 - 0.3% of difference 0 -0.5 - Slope difference seems -1 2 2 � � / ndf / ndf 0.09205 / 6 0.09205 / 6 to depend on the -1.5 p0 p0 0.001456 0.001456 0.04001 0.04001 ± ± actuators p1 p1 -0.4495 -0.4495 0.009483 0.009483 ± ± -2 -10 -8 -6 -4 -2 0 2 4 6 8 10 � x Gap (mm) Luca Somaschini - INFN Pisa 23

  24. Gr Group B oup Beha haviour viour Let’s consider the overall behavior by Let’s consider the overall behavior by comparing the slopes of all actuators comparing the slopes of all actuators Luca Somaschini - INFN Pisa 24

  25. Gr Group B oup Beha haviour viour P vs Deflection - Squeeze P vs Deflection - Squeeze -0.02 2 2 / ndf / ndf � � 0.275 / 5 0.275 / 5 Slope (mm/PSI) Squeeze: Squeeze: p0 p0 -0.02541 -0.02541 0.0002218 0.0002218 ± ± -0.021 -0.022 - Pistons behave VERY -0.023 uniformly -0.024 -0.025 -0.026 -0.027 -0.028 -0.029 -0.03 0 1 2 3 4 5 6 Actuator Number Luca Somaschini - INFN Pisa 25

  26. Gr Group B oup Beha haviour viour P vs Deflection - Stretch P vs Deflection - Stretch 0.028 2 2 / ndf / ndf � � 1.975 / 5 1.975 / 5 Slope (mm/PSI) Stretch: Stretch: p0 p0 0.0226 0.0226 0.0002038 0.0002038 ± ± 0.027 0.026 - Pistons do not behave 0.025 so uniformly 0.024 0.023 - PropValves have been 0.022 0.021 swapped -> doesn’t 0.02 depend on valves 0.019 0.018 0 1 2 3 4 5 6 Actuator Number How bad is this difference? How bad is this difference? Let’s have a closer look Let’s have a closer look Luca Somaschini - INFN Pisa 26

  27. Group B Gr oup Beha haviour viour P vs Deflection - Stretch P vs Deflection - Stretch 0.028 2 2 / ndf / ndf 1.975 / 5 1.975 / 5 � � Slope (mm/PSI) p0 p0 0.0226 0.0226 ± ± 0.0002038 0.0002038 0.027 0.026 0.025 0.024 0.023 0.022 0.021 0.02 0.019 0.018 0 1 2 3 4 5 6 Actuator Number Δ S = S max − S min ≈ 0.0011 mm / PSI Δ Deflecton = 0,11 mm @100 PSI Δ Deflecton = 5% Luca Somaschini - INFN Pisa 27

  28. Gr Group B oup Beha haviour viour Squeezing Slope: 0.02541 mm/PSI Squeezing Slope: 0.02541 mm/PSI Stretching Slope: 0.0226 mm/PSI Stretching Slope: 0.0226 mm/PSI Slopes are different but it’s not a problem Slopes are different but it’s not a problem These are obtained with two different pneumatic These are obtained with two different pneumatic circuits circuits We simply need to use two different calibrations when We simply need to use two different calibrations when squeezing or stretching squeezing or stretching Luca Somaschini - INFN Pisa 28

  29. Next Ste xt Step: R p: RF T F Test st Control system will be equipped with electronic pressure gauges Luca Somaschini - INFN Pisa 29

  30. Next Ste xt Step: R p: RF T F Test st Control system will be equipped with electronic pressure gauges z ¡ Luca Somaschini - INFN Pisa 30

  31. Next Ste xt Step: R p: RF T F Test st Test in Lab 6: Measurements • RF Parameters: f, Q, S11, S21 (Network Analyser) • Pressure (Remote Pressure gauges) • Fork gap variation (Linear Potentiometers) With copper and beryllium windows Luca Somaschini - INFN Pisa 31

Recommend


More recommend