advances and challenges in waveform modeling for
play

Advances and Challenges in Waveform Modeling for Gravitational-Wave - PowerPoint PPT Presentation

Advances and Challenges in Waveform Modeling for Gravitational-Wave Observations Alessandra Buonanno Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI) Department of Physics, University of Maryland Advances &


  1. Advances and Challenges in Waveform Modeling for Gravitational-Wave Observations Alessandra Buonanno Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI) Department of Physics, University of Maryland Advances & Challenges in Computational Relativity”, ICERM, Brown U Sep 14, 2020

  2. Outline • Observing gravitational waves and inferring astrophysical/physical information hinges on our ability to make precise predictions of two- body dynamics and gravitational radiation. • How do we build the hundred-thousand accurate and efficient waveform models employed in LIGO/Virgo searches and inference studies ? • Success of interplay between analytical and numerical relativity . • State-of-the-art waveform models for binary black holes. • Are current observations dominated by systematics due to modeling? • What are the highest modeling priorities toward the era of high- precision GW astrophysics?

  3. GW observations by LIGO & Virgo so far

  4. Solving two-body problem in General Relativity bound orbits: v 2 /c 2 ~ GM/rc 2 4 10 • GR is non-linear theory . (AB & Sathyaprakash 14) 3 Post-Newtonian theory 10 Perturbation 2 /GM • Einstein’s field equations can theory 2 10 Effective one-body theory be solved: gravitational r c self-force Numerical 1 - approximately, but analytically 10 Relativity ( fast way) 0 - “ exactly” , but numerically on 10 0 1 2 3 4 5 10 10 10 10 10 10 supercomputers ( slow way) m 1 / m 2 • Synergy between analytical and numerical relativity is crucial.

  5. Analytical Relativity • Post-Newtonian (PN) (large separation, • Post-Minkowskian (PM) (large and slow motion, bound motion , i.e., separation, unbound motion , i.e., early inspiral ) scattering ) • Small mass-ratio (gravitational self- • Perturbation theory ( ringdown force, i.e., early to late inspiral ) of final object, tides ) • Effective-one-body (EOB) (combines results from all methods, i.e., entire coalescence )

  6. Numerical Relativity 1 . 0 precessing runs non-precessing runs • Einstein’s equations solved numerically 0 . 8 new precessing runs primary spin 0 . 6 | χ 1 | 0 . 4 0 . 2 • 376 GW cycles , zero spins & mass-ratio 7 0 . 0 (8 months, few millions CPU-h) 2 4 6 8 10 mass ratio q (Szilagyi, Blackman, AB, Taracchini et al. 15) • Public SXS NR catalog (Boyle et 0.1 0.0 al. 19) plus non-public SXS NR -0.1 D L /M Re( h 22 ) 0 20000 40000 60000 80000 100000 waveforms (Ossokine et al. 20) . 0.1 0.0 -0.1 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 • Other NR catalogs 0.1 0.0 -0.1 (Husa et al. 15, Jani et al. 17, 100000 101000 102000 103000 104000 105000 ( t − r * ) / M Healy et al. 17, 19, 20)

  7. The effective-one-body approach in a nutshell Real description Effective description µ m 2 m M ap • Two-body dynamics is mapped 1 into dynamics of one-effective body moving in deformed black- hole spacetime , deformation being the mass ratio. g g eff µ ν µ ν m m 1 2 • Some key ideas of EOB theory E E eff real were inspired by quantum field theory when describing energy of J N J N real comparable-mass charged bodies. eff eff real (AB & Damour 19 99 )

  8. <latexit sha1_base64="3/03vJuQNQnP7Rq5/0mHLKHiFA =">A DXnicjVJdaxNBFJ1stNbU2lRfBF8uBiGhGnY3HyYPQtUX wIVTFvIJGF2MpsMnf1gZlYIy/xJ38QXf4qzmwRt4oMXFs6e 8+5H0yQCq606/6oONUHD48eHT+unTw5fXpWP392rZJMUjamiUjkbUAUEzxmY821YLepZCQKBLsJ7j4V+ZtvTCqexF/1OmXTiCxjHnJKtKXm5xWd49JlIpfBNPfabhlv3H1gPsx nDVly8B7uKc5KP2j8eAt4FASmvsjk0sDFwb+t9 WB6NZB2xnK591rAHUsGCh uYmP+ya3NK7Nl3P/voGp3zmA5Z8udLQ2uZGs+7OqFsYbVgy7zUt27oAi2Y5lhFgkSxNSZaw2NlqeqYQ7W3u 27PHdqhB16nPyzAcDgY+J7ZmfdLn0LfL/WYLhKt5vXGbk84BLujN A2rub173iR0Cxisa CKDXx3FRPcyI1p4KZGs4USwm9I0s2sTAmEVPTvBzVwGvL CBMpP1iDSX7tyInkVLrKLCVEdErtZ8ryH/lJpkOB9Ocx2m WUw3jcJMgE6geGuw4J RLdYWECq5nRXoitjDaPsia/YI3v7Kh+Dab3tu2/vSbVx+3J7jGL1Er1ATe gdukSf0RUaI1r56VScmnPi/KoeVU+rZ5tSp7LVPEf3ovriN7JH/IE=</latexit> DXnicjVJdaxNBFJ1stNbU2lRfBF8uBiGhGnY3HyYPQtUX wIVTFvIJGF2MpsMnf1gZlYIy/xJ38QXf4qzmwRt4oMXFs6e 8+5H0yQCq606/6oONUHD48eHT+unTw5fXpWP392rZJMUjamiUjkbUAUEzxmY821YLepZCQKBLsJ7j4V+ZtvTCqexF/1OmXTiCxjHnJKtKXm5xWd49JlIpfBNPfabhlv3H1gPsx nDVly8B7uKc5KP2j8eAt4FASmvsjk0sDFwb+t9 WB6NZB2xnK591rAHUsGCh uYmP+ya3NK7Nl3P/voGp3zmA5Z8udLQ2uZGs+7OqFsYbVgy7zUt27oAi2Y5lhFgkSxNSZaw2NlqeqYQ7W3u 27PHdqhB16nPyzAcDgY+J7ZmfdLn0LfL/WYLhKt5vXGbk84BLujN A2rub173iR0Cxisa CKDXx3FRPcyI1p4KZGs4USwm9I0s2sTAmEVPTvBzVwGvL CBMpP1iDSX7tyInkVLrKLCVEdErtZ8ryH/lJpkOB9Ocx2m WUw3jcJMgE6geGuw4J RLdYWECq5nRXoitjDaPsia/YI3v7Kh+Dab3tu2/vSbVx+3J7jGL1Er1ATe gdukSf0RUaI1r56VScmnPi/KoeVU+rZ5tSp7LVPEf3ovriN7JH/IE=</latexit> <latexit sha1_base64="3/03vJuQNQnP7Rq5/0mHLKHiFA =">A <latexit sha1_base64="3/03vJuQNQnP7Rq5/0mHLKHiFA =">A DXnicjVJdaxNBFJ1stNbU2lRfBF8uBiGhGnY3HyYPQtUX wIVTFvIJGF2MpsMnf1gZlYIy/xJ38QXf4qzmwRt4oMXFs6e 8+5H0yQCq606/6oONUHD48eHT+unTw5fXpWP392rZJMUjamiUjkbUAUEzxmY821YLepZCQKBLsJ7j4V+ZtvTCqexF/1OmXTiCxjHnJKtKXm5xWd49JlIpfBNPfabhlv3H1gPsx nDVly8B7uKc5KP2j8eAt4FASmvsjk0sDFwb+t9 WB6NZB2xnK591rAHUsGCh uYmP+ya3NK7Nl3P/voGp3zmA5Z8udLQ2uZGs+7OqFsYbVgy7zUt27oAi2Y5lhFgkSxNSZaw2NlqeqYQ7W3u 27PHdqhB16nPyzAcDgY+J7ZmfdLn0LfL/WYLhKt5vXGbk84BLujN A2rub173iR0Cxisa CKDXx3FRPcyI1p4KZGs4USwm9I0s2sTAmEVPTvBzVwGvL CBMpP1iDSX7tyInkVLrKLCVEdErtZ8ryH/lJpkOB9Ocx2m WUw3jcJMgE6geGuw4J RLdYWECq5nRXoitjDaPsia/YI3v7Kh+Dab3tu2/vSbVx+3J7jGL1Er1ATe gdukSf0RUaI1r56VScmnPi/KoeVU+rZ5tSp7LVPEf3ovriN7JH/IE=</latexit> EOB Hamiltonian: resummed conservative dynamics • Real Hamiltonian • Effective Hamiltonian • EOB Hamiltonian: • Dynamics condensed A ν (r) and B ν (r) • A ν (r), which encodes the energetics of circular orbits, is quite simple: ◆ M 4 ν + a 5 ( ν ) + a log r +2 M 3 ν ✓ 94 A ν ( r ) = 1 − 2 M 3 − 41 5 ( ν ) log( r ) + a 6 ( ν ) 32 π 2 + + · · · r 3 r 4 r 5 r 6 5PN

Recommend


More recommend