advanced brayton cycle y y design
play

Advanced Brayton Cycle y y Design MAE 4 th Year Project MAE 4 th - PowerPoint PPT Presentation

Supercritical CO 2 Advanced Brayton Cycle y y Design MAE 4 th Year Project MAE 4 th Year Project 2010-11 Project History j y 50 kW zero-emission power plant 50 kW zero emission power plant cycle schematic Test Rigs g updated gas


  1. Supercritical CO 2 Advanced Brayton Cycle y y Design MAE 4 th Year Project MAE 4 th Year Project 2010-11

  2. Project History j y 50 kW zero-emission power plant 50 kW zero emission power plant cycle schematic

  3. Test Rigs g updated gas bearing test rig control system test rig corrosion test rig design gas bearing test rig

  4. Supercritical CO 2 Brayton Cycle p y y 2 • • high efficiency power conversion high-efficiency power conversion system for electricity generation • η th ~40-50% for TIT~750 °C • reduced compressor work near CP p cycle schematic cycle schematic • low turbine inlet temperature • closed cycle, S-CO 2 working fluid • attractive characteristics • applications • nuclear reactor systems • nuclear propulsion S-CO 2 phase diagram T-s diagram • conventional power production ti l d ti 700 600 • CHP, trigeneration ensity (kg/m 3 ) 500 • renewable energy (solar, biomass) 400 89.7 300 12.5 De 200 200 100 2 2 0 300 305 310 315 320 325 330 335 340 Temperature (K) effect of temperature on density

  5. Supercritical CO 2 Plant Layout p y 2 • • simple cycle layout simple cycle layout • small turbomachinery • printed circuit heat exchangers • • compact plant footprint compact plant footprint [ [Heatric] ] [SGT6-2000E, Siemens] plant layout – heat exchangers, piping, gearbox, p y g , p p g, g , generator turbomachinery – compressor, turbine, shaft, bearings, coupling

  6. Supercritical CO 2 Plant Layout p y 2 100 MWe supercritical CO 2 power plant cycle schematic

  7. Tasks for 2010-11 • cycle analysis • transient and steady state • design point and off-design performance • • turbomachinery design turbomachinery design aerodynamic analysis and design • compressor and turbine aerodynamics, secondary air system • compressor, turbine, shaft, bearing, casing structures • heat exchanger design • control system design • start-up, shut-down, part load, load t t h t d t l d l d shed structural analysis and design • system integration • plant size, component integration, plant size, component integration, material compatibility control system design

  8. Questions? Q

Recommend


More recommend