admissible digit sets
play

Admissible Digit Sets Jesse Hughes 1 , 2 Milad Niqui 2 1 Technical - PowerPoint PPT Presentation

Digit sets Admissibility Admissible Digit Sets Jesse Hughes 1 , 2 Milad Niqui 2 1 Technical University of Eindhoven 2 Radboud University of Nijmegen September 28, 2004 Hughes, Niqui Admissible Digit Sets Digit sets Admissibility Outline


  1. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation How to construct the sets S � x i 1 φ 0 ( x ) = x 2 φ 1 ( x ) = x + 1 2 1 1 S 01 ... 2 2 0 S 01 ... = [0 , 1] 0 S 01 ... 2 S 01 ... = φ 0 ([0 , 1]) 1 S 01 ... 1 1 S 01 ... = φ 0 ◦ φ 1 ([0 , 1]) 4 2 S � x i = φ x 0 ◦ . . . ◦ φ x i ([0 , 1]) 0 0 � S � x i = { 0 . x 0 x 1 . . . } i ∈ N Hughes, Niqui Admissible Digit Sets

  2. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation 1, + ∞ , what’s the difference? + ∞ Work with [0 , + ∞ ] or [0 , 1]? 1 The choice is arbitrary. 4 4 5 Squint and you can’t tell the difference. 2 2 3 1 1 2 1 1 2 3 1 1 4 5 0 0 Hughes, Niqui Admissible Digit Sets

  3. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation 1, + ∞ , what’s the difference? + ∞ Work with [0 , + ∞ ] or [0 , 1]? 1 The choice is arbitrary. 4 4 5 Squint and you can’t tell the difference. 2 2 3 1 1 2 1 1 2 3 1 1 4 5 0 0 Hughes, Niqui Admissible Digit Sets

  4. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation 1, + ∞ , what’s the difference? + ∞ Work with [0 , + ∞ ] or [0 , 1]? 1 The choice is arbitrary. 4 4 5 Squint and you can’t tell the difference. 2 2 3 1 1 2 1 1 2 3 1 1 4 5 0 0 Hughes, Niqui Admissible Digit Sets

  5. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation M¨ obius maps Recall φ 0 ( x ) = x φ 1 ( x ) = x +1 2 , 2 . M¨ obius map: a function A ( x ) = ax + b cx + d where a , b , c , d ∈ R . We are interested in M¨ obius maps that are strictly increasing, refining ( A : [0 , + ∞ ] → [0 , + ∞ ]). Hughes, Niqui Admissible Digit Sets

  6. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation M¨ obius maps Recall φ 0 ( x ) = x φ 1 ( x ) = x +1 2 , 2 . M¨ obius map: a function A ( x ) = ax + b cx + d where a , b , c , d ∈ R . We are interested in M¨ obius maps that are strictly increasing, refining ( A : [0 , + ∞ ] → [0 , + ∞ ]). Hughes, Niqui Admissible Digit Sets

  7. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation M¨ obius maps Recall φ 0 ( x ) = x φ 1 ( x ) = x +1 2 , 2 . M¨ obius map: a function A ( x ) = ax + b cx + d where a , b , c , d ∈ R . We are interested in M¨ obius maps that are strictly increasing, refining ( A : [0 , + ∞ ] → [0 , + ∞ ]). Hughes, Niqui Admissible Digit Sets

  8. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation M¨ obius maps Recall φ 0 ( x ) = x φ 1 ( x ) = x +1 2 , 2 . M¨ obius map: a function A ( x ) = ax + b cx + d where a , b , c , d ∈ R . We are interested in M¨ obius maps that are strictly increasing, refining ( A : [0 , + ∞ ] → [0 , + ∞ ]). Hughes, Niqui Admissible Digit Sets

  9. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Digit sets M¨ obius maps are our digits . Let Φ = { φ 0 , . . . , φ k } be a set of M¨ obius maps. A sequence � x = φ i 0 φ i 1 φ i 2 . . . represents x if ∞ � φ i 0 ◦ φ i 1 ◦ . . . ◦ φ i n ([0 , + ∞ ]) = { x } . � �� � n =0 S � x n Φ is a digit set if each x is represented. Hughes, Niqui Admissible Digit Sets

  10. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Digit sets M¨ obius maps are our digits . Let Φ = { φ 0 , . . . , φ k } be a set of M¨ obius maps. A sequence � x = φ i 0 φ i 1 φ i 2 . . . represents x if ∞ � φ i 0 ◦ φ i 1 ◦ . . . ◦ φ i n ([0 , + ∞ ]) = { x } . � �� � n =0 S � x n Φ is a digit set if each x is represented. Hughes, Niqui Admissible Digit Sets

  11. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Digit sets M¨ obius maps are our digits . Let Φ = { φ 0 , . . . , φ k } be a set of M¨ obius maps. S � x 1 A sequence � x = φ i 0 φ i 1 φ i 2 . . . represents x if ∞ � φ i 0 ◦ φ i 1 ◦ . . . ◦ φ i n ([0 , + ∞ ]) = { x } . � �� � n =0 x S � x n Φ is a digit set if each x is represented. Hughes, Niqui Admissible Digit Sets

  12. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Digit sets M¨ obius maps are our digits . Let Φ = { φ 0 , . . . , φ k } be a set of M¨ obius maps. A sequence � x = φ i 0 φ i 1 φ i 2 . . . represents x if S � x 2 ∞ � φ i 0 ◦ φ i 1 ◦ . . . ◦ φ i n ([0 , + ∞ ]) = { x } . � �� � n =0 x S � x n Φ is a digit set if each x is represented. Hughes, Niqui Admissible Digit Sets

  13. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Digit sets M¨ obius maps are our digits . Let Φ = { φ 0 , . . . , φ k } be a set of M¨ obius maps. A sequence � x = φ i 0 φ i 1 φ i 2 . . . represents x if ∞ � S � φ i 0 ◦ φ i 1 ◦ . . . ◦ φ i n ([0 , + ∞ ]) = { x } . x 3 � �� � n =0 x S � x n Φ is a digit set if each x is represented. Hughes, Niqui Admissible Digit Sets

  14. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Digit sets M¨ obius maps are our digits . Let Φ = { φ 0 , . . . , φ k } be a set of M¨ obius maps. A sequence � x = φ i 0 φ i 1 φ i 2 . . . represents x if ∞ � S � φ i 0 ◦ φ i 1 ◦ . . . ◦ φ i n ([0 , + ∞ ]) = { x } . x 3 � �� � n =0 x S � x n Φ is a digit set if each x is represented. Hughes, Niqui Admissible Digit Sets

  15. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Good digit sets Φ is a good digit set if 1 Loosely: � S � x i is always a singleton. 2 The sets φ i ([0 , + ∞ ]) cover [0 , + ∞ ]. Theorem Good digit sets are digit sets. Good digit sets yield a total representation , i.e. Φ ω → [0 , + ∞ ] is total, continuous, surjective. Hughes, Niqui Admissible Digit Sets

  16. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Good digit sets Φ is a good digit set if  1 Loosely: � S �  x i is always a singleton.  φ c 2 The sets φ i ([0 , + ∞ ]) cover [0 , + ∞ ].    Theorem φ b   Good digit sets are digit sets.       Good digit sets yield a total representation ,     i.e. Φ ω → [0 , + ∞ ] is φ a  total,      continuous,    surjective. Hughes, Niqui Admissible Digit Sets

  17. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Good digit sets Φ is a good digit set if  1 Loosely: � S �  x i is always a singleton.  φ c 2 The sets φ i ([0 , + ∞ ]) cover [0 , + ∞ ].    Theorem φ b   Good digit sets are digit sets.       Good digit sets yield a total representation ,     i.e. Φ ω → [0 , + ∞ ] is φ a  total,      continuous,    surjective. Hughes, Niqui Admissible Digit Sets

  18. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Good digit sets Φ is a good digit set if  1 Loosely: � S �  x i is always a singleton.  φ c 2 The sets φ i ([0 , + ∞ ]) cover [0 , + ∞ ].    Theorem φ b   Good digit sets are digit sets.       Good digit sets yield a total representation ,     i.e. Φ ω → [0 , + ∞ ] is φ a  total,      continuous,    surjective. Hughes, Niqui Admissible Digit Sets

  19. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Good digit sets Φ is a good digit set if  1 Loosely: � S �  x i is always a singleton.  φ c 2 The sets φ i ([0 , + ∞ ]) cover [0 , + ∞ ].    Theorem φ b   Good digit sets are digit sets.       Good digit sets yield a total representation ,     i.e. Φ ω → [0 , + ∞ ] is φ a  total,      continuous,    surjective. Hughes, Niqui Admissible Digit Sets

  20. Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation Good digit sets Φ is a good digit set if  1 Loosely: � S �  x i is always a singleton.  φ c 2 The sets φ i ([0 , + ∞ ]) cover [0 , + ∞ ].    Theorem φ b   Good digit sets are digit sets.       Good digit sets yield a total representation ,     i.e. Φ ω → [0 , + ∞ ] is φ a  total,      continuous,    surjective. Hughes, Niqui Admissible Digit Sets

  21. ✵ ✽ ✼ ✸ ✽ ✵ ✵ ✾ ✵ ✺ ✽ ✵ ✵ ✵ ✶ ✹ ✾ ✵ ✷ ✽ ✸ ✼ ✸ ✻ ✵ ✷ ✶ ✼ ✵ ✾ ✹ ✼ ✵ ✷ ✻ ✸ ✼ ✸ ✽ ✵ ✷ ✵ ✸ ✹ ✽ ✵ ✵ ✽ ✵ ✺ ✾ ✵ ✵ ✽ ✼ ✹ ✵ ❂ ❇ ❍ ❊ ■ ❁ ❏ ❃ ❑ ▲ ▼ ◆ ❖ ❋ P ◗ ● ❘ ❙ ❚ ❯ ❱ ❲ ❲ ❲ ● ❄ ✼ ✶ ✵ ✵ ✻ ✵ ✺ ✹ ✵ ✵ ✹ ✸ ✷ ✵ ❊ ✿ ❀ ❁ ❂ ❃ ❄ ❅ ❆ ❇ ❈ ❉ ❂ ✼ ✵ ✻ ✎ ✒ ✑ ✒ ✎ ✎ ✒ ✑ ✒ ✑ ✏ ✍ ✏ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✢ ✑ ✎ ✥ ✝ � ✁ ✁ � ✂ ✂ ✄ ☎ ☎ ✄ ✆ ✞ ✍ ✟ ✠ ✟ ✟ ✠ ✟ ✞ ✡ ☛ ☞ ✌ ✤ ✣ ✤ ✬ ✣ ✫ ✬ ✭ ✮ ✯ ✰ ✱ ✲ ✫ ✳ ★ ✴ ✵ ✶ ✷ ✸ ✹ ✵ ✵ ✹ ✵ ✺ ✩ ✪ ✧ ✣ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✜ ✛ ✦ ✜ ✜ ✥ ✜ ✥ ✣ ✤ ✢ ✤ ✣ ✦ ✣ ✜ ❲ The Stern-Brocot representation is a digit set If my parents are a How to make the tree: b and c Hughes, Niqui Admissibility d , then I am a + c Digit sets Admissible Digit Sets The Stern-Brocot representation M¨ Binary representation obius maps and digit sets b + d .

  22. ✼ ✵ ✸ ✼ ✶ ✶ ✼ ✸ ✽ ✵ ✵ ✾ ✺ ✵ ✽ ✵ ✵ ✽ ✵ ✹ ✾ ✵ ✷ ✽ ✸ ✽ ✵ ✸ ✸ ✵ ✵ ❱ ✵ ✹ ✼ ✵ ✷ ✻ ✸ ✼ ✽ ✾ ✵ ✷ ✾ ✵ ✹ ✽ ✵ ✵ ✽ ✵ ✺ ✼ ✻ ✺ ❏ ❉ ❂ ❊ ❄ ❋ ● ❇ ❍ ❊ ■ ❁ ❃ ❇ ❑ ▲ ▼ ◆ ❂ ❖ P ◗ ● ❘ ❙ ❈ ❆ ✵ ✵ ✷ ✼ ✵ ✹ ✼ ✵ ✵ ✻ ✵ ✺ ✹ ✵ ❅ ✹ ✸ ✷ ✶ ✵ ✿ ❀ ❁ ❂ ❃ ❄ ✻ ✵ ❯ ✑ ✍ ✎ ✏ ✑ ✒ ✑ ✒ ✎ ✎ ✒ ✒ ☞ ✑ ✏ ✎ ✍ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✌ ☛ ✛ ☎ ❲ ❲ ❲ ❲ � ✁ ✁ � ✂ ✂ ✄ ☎ ✡ ✄ ✆ ✝ ✞ ✟ ✠ ✟ ✟ ✠ ✟ ✞ ✚ ✜ ✹ ✱ ✛ ✧ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯ ✰ ✲ ✢ ✫ ✬ ✳ ✴ ✵ ✶ ✷ ✸ ✹ ✵ ✵ ✜ ✢ ✣ ✤ ✣ ✤ ✥ ✤ ✣ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✜ ✜ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✣ ✤ ✥ ❚ Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation The Stern-Brocot representation is a digit set The Stern-Brocot representation maps finite sequences of { L , R } to rationals. Hughes, Niqui Admissible Digit Sets

  23. ✵ ✵ ✸ ✼ ✶ ✶ ✼ ✸ ✽ ✵ ✵ ✾ ✺ ✵ ✽ ✵ ✵ ✽ ✵ ✹ ✾ ✵ ✷ ✽ ✸ ✽ ✵ ✸ ✸ ✵ ✵ ✼ ❱ ✹ ✼ ✵ ✷ ✻ ✸ ✼ ✽ ✾ ✵ ✷ ✾ ✵ ✹ ✽ ✵ ✵ ✽ ✵ ✺ ✼ ✻ ✺ ❏ ❉ ❂ ❊ ❄ ❋ ● ❇ ❍ ❊ ■ ❁ ❃ ❇ ❑ ▲ ▼ ◆ ❂ ❖ P ◗ ● ❘ ❙ ❈ ❆ ✵ ✵ ✷ ✼ ✵ ✹ ✼ ✵ ✵ ✻ ✵ ✺ ✹ ✵ ❅ ✹ ✸ ✷ ✶ ✵ ✿ ❀ ❁ ❂ ❃ ❄ ✻ ✵ ❯ ✑ ✍ ✎ ✏ ✑ ✒ ✑ ✒ ✎ ✎ ✒ ✒ ☞ ✑ ✏ ✎ ✍ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✌ ☛ ✛ ☎ ❲ ❲ ❲ ❲ � ✁ ✁ � ✂ ✂ ✄ ☎ ✡ ✄ ✆ ✝ ✞ ✟ ✠ ✟ ✟ ✠ ✟ ✞ ✚ ✜ ✹ ✱ ✛ ✧ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯ ✰ ✲ ✢ ✫ ✬ ✳ ✴ ✵ ✶ ✷ ✸ ✹ ✵ ✵ ✜ ✢ ✣ ✤ ✣ ✤ ✥ ✤ ✣ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✜ ✜ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✣ ✤ ✥ ❚ Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation The Stern-Brocot representation is a digit set The Stern-Brocot representation maps finite sequences of { L , R } to rationals. Easy to show: infinite sequences yield Cauchy sequences of rationals. Hughes, Niqui Admissible Digit Sets

  24. ✵ ✵ ✸ ✼ ✶ ✶ ✼ ✸ ✽ ✵ ✵ ✾ ✺ ✵ ✽ ✵ ✵ ✽ ✵ ✹ ✾ ✵ ✷ ✽ ✸ ✽ ✵ ✸ ✸ ✵ ✵ ✼ ❱ ✹ ✼ ✵ ✷ ✻ ✸ ✼ ✽ ✾ ✵ ✷ ✾ ✵ ✹ ✽ ✵ ✵ ✽ ✵ ✺ ✼ ✻ ✺ ❏ ❉ ❂ ❊ ❄ ❋ ● ❇ ❍ ❊ ■ ❁ ❃ ❇ ❑ ▲ ▼ ◆ ❂ ❖ P ◗ ● ❘ ❙ ❈ ❆ ✵ ✵ ✷ ✼ ✵ ✹ ✼ ✵ ✵ ✻ ✵ ✺ ✹ ✵ ❅ ✹ ✸ ✷ ✶ ✵ ✿ ❀ ❁ ❂ ❃ ❄ ✻ ✵ ❯ ✑ ✍ ✎ ✏ ✑ ✒ ✑ ✒ ✎ ✎ ✒ ✒ ☞ ✑ ✏ ✎ ✍ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✌ ☛ ✛ ☎ ❲ ❲ ❲ ❲ � ✁ ✁ � ✂ ✂ ✄ ☎ ✡ ✄ ✆ ✝ ✞ ✟ ✠ ✟ ✟ ✠ ✟ ✞ ✚ ✜ ✹ ✱ ✛ ✧ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯ ✰ ✲ ✢ ✫ ✬ ✳ ✴ ✵ ✶ ✷ ✸ ✹ ✵ ✵ ✜ ✢ ✣ ✤ ✣ ✤ ✥ ✤ ✣ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✜ ✜ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✣ ✤ ✥ ❚ Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation The Stern-Brocot representation is a digit set The Stern-Brocot representation maps finite sequences of { L , R } to rationals. Easy to show: infinite sequences yield Cauchy sequences of rationals. Careful with that metric! Hughes, Niqui Admissible Digit Sets

  25. ✷ ✵ ✸ ✼ ✶ ✶ ✼ ✸ ✽ ✵ ✵ ✾ ✺ ✵ ✽ ✵ ✵ ✽ ✵ ✹ ✾ ✵ ✷ ✽ ✸ ✽ ✵ ✸ ✸ ✵ ✵ ✼ ✵ ✹ ✼ ✵ ❱ ✻ ✸ ✼ ✽ ✾ ✵ ✷ ✾ ✵ ✹ ✽ ✵ ✵ ✽ ✵ ✺ ✼ ✻ ✺ ❏ ❉ ❂ ❊ ❄ ❋ ● ❇ ❍ ❊ ■ ❁ ❃ ❇ ❑ ▲ ▼ ◆ ❂ ❖ P ◗ ● ❘ ❙ ❈ ❆ ✵ ✵ ✷ ✼ ✵ ✹ ✼ ✵ ✵ ✻ ✵ ✺ ✹ ✵ ❅ ✹ ✸ ✷ ✶ ✵ ✿ ❀ ❁ ❂ ❃ ❄ ✻ ✵ ❯ ✑ ✍ ✎ ✏ ✑ ✒ ✑ ✒ ✎ ✎ ✒ ✒ ☞ ✑ ✏ ✎ ✍ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✌ ☛ ✛ ☎ ❲ ❲ ❲ ❲ � ✁ ✁ � ✂ ✂ ✄ ☎ ✡ ✄ ✆ ✝ ✞ ✟ ✠ ✟ ✟ ✠ ✟ ✞ ✚ ✜ ✹ ✱ ✛ ✧ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯ ✰ ✲ ✢ ✫ ✬ ✳ ✴ ✵ ✶ ✷ ✸ ✹ ✵ ✵ ✜ ✢ ✣ ✤ ✣ ✤ ✥ ✤ ✣ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✜ ✜ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✣ ✤ ✥ ❚ Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation The Stern-Brocot representation is a digit set A nested sequence of sets S � x L . . . ∈ [0 , 1] i . LR . . . ∈ [1 2 , 1] Each S � x i is bounded by the parents of x 1 x 2 . . . x i . LRR . . . ∈ [2 3 , 1] Hughes, Niqui Admissible Digit Sets

  26. ✷ ✵ ✸ ✼ ✶ ✶ ✼ ✸ ✽ ✵ ✵ ✾ ✺ ✵ ✽ ✵ ✵ ✽ ✵ ✹ ✾ ✵ ✷ ✽ ✸ ✽ ✵ ✸ ✸ ✵ ✵ ✼ ✵ ✹ ✼ ✵ ❱ ✻ ✸ ✼ ✽ ✾ ✵ ✷ ✾ ✵ ✹ ✽ ✵ ✵ ✽ ✵ ✺ ✼ ✻ ✺ ❏ ❉ ❂ ❊ ❄ ❋ ● ❇ ❍ ❊ ■ ❁ ❃ ❇ ❑ ▲ ▼ ◆ ❂ ❖ P ◗ ● ❘ ❙ ❈ ❆ ✵ ✵ ✷ ✼ ✵ ✹ ✼ ✵ ✵ ✻ ✵ ✺ ✹ ✵ ❅ ✹ ✸ ✷ ✶ ✵ ✿ ❀ ❁ ❂ ❃ ❄ ✻ ✵ ❯ ✑ ✍ ✎ ✏ ✑ ✒ ✑ ✒ ✎ ✎ ✒ ✒ ☞ ✑ ✏ ✎ ✍ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✌ ☛ ✛ ☎ ❲ ❲ ❲ ❲ � ✁ ✁ � ✂ ✂ ✄ ☎ ✡ ✄ ✆ ✝ ✞ ✟ ✠ ✟ ✟ ✠ ✟ ✞ ✚ ✜ ✹ ✱ ✛ ✧ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯ ✰ ✲ ✢ ✫ ✬ ✳ ✴ ✵ ✶ ✷ ✸ ✹ ✵ ✵ ✜ ✢ ✣ ✤ ✣ ✤ ✥ ✤ ✣ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✜ ✜ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✣ ✤ ✥ ❚ Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation The Stern-Brocot representation is a digit set A nested sequence of sets S � x L . . . ∈ [0 , 1] i . LR . . . ∈ [1 2 , 1] Each S � x i is bounded by the parents of x 1 x 2 . . . x i . LRR . . . ∈ [2 3 , 1] Hughes, Niqui Admissible Digit Sets

  27. ✷ ✵ ✸ ✼ ✶ ✶ ✼ ✸ ✽ ✵ ✵ ✾ ✺ ✵ ✽ ✵ ✵ ✽ ✵ ✹ ✾ ✵ ✷ ✽ ✸ ✽ ✵ ✸ ✸ ✵ ✵ ✼ ✵ ✹ ✼ ✵ ❱ ✻ ✸ ✼ ✽ ✾ ✵ ✷ ✾ ✵ ✹ ✽ ✵ ✵ ✽ ✵ ✺ ✼ ✻ ✺ ❏ ❉ ❂ ❊ ❄ ❋ ● ❇ ❍ ❊ ■ ❁ ❃ ❇ ❑ ▲ ▼ ◆ ❂ ❖ P ◗ ● ❘ ❙ ❈ ❆ ✵ ✵ ✷ ✼ ✵ ✹ ✼ ✵ ✵ ✻ ✵ ✺ ✹ ✵ ❅ ✹ ✸ ✷ ✶ ✵ ✿ ❀ ❁ ❂ ❃ ❄ ✻ ✵ ❯ ✑ ✍ ✎ ✏ ✑ ✒ ✑ ✒ ✎ ✎ ✒ ✒ ☞ ✑ ✏ ✎ ✍ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✌ ☛ ✛ ☎ ❲ ❲ ❲ ❲ � ✁ ✁ � ✂ ✂ ✄ ☎ ✡ ✄ ✆ ✝ ✞ ✟ ✠ ✟ ✟ ✠ ✟ ✞ ✚ ✜ ✹ ✱ ✛ ✧ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯ ✰ ✲ ✢ ✫ ✬ ✳ ✴ ✵ ✶ ✷ ✸ ✹ ✵ ✵ ✜ ✢ ✣ ✤ ✣ ✤ ✥ ✤ ✣ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✜ ✜ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✣ ✤ ✥ ❚ Binary representation Digit sets M¨ obius maps and digit sets Admissibility The Stern-Brocot representation The Stern-Brocot representation is a digit set A nested sequence of sets S � x L . . . ∈ [0 , 1] i . LR . . . ∈ [1 2 , 1] Each S � x i is bounded by the parents of x 1 x 2 . . . x i . LRR . . . ∈ [2 3 , 1] Hughes, Niqui Admissible Digit Sets

  28. ✵ ✵ ✶ ✼ ✸ ✽ ✵ ✵ ✾ ✵ ✺ ✽ ✵ ✽ ✼ ✵ ✹ ✾ ✵ ✷ ✽ ✸ ✼ ✸ ✻ ✵ ✶ ✸ ✼ ✷ ✼ ✹ ✼ ✵ ✷ ✻ ✸ ✼ ✸ ✽ ✵ ✾ ✽ ✵ ✹ ✽ ✵ ✵ ✽ ✵ ✺ ✾ ✵ ✵ ✷ ✵ ✵ ◆ ● ❇ ❍ ❊ ■ ❁ ❏ ❃ ❑ ▲ ▼ ❂ ❄ ❖ P ◗ ● ❘ ❙ ❚ ❯ ❱ ❲ ❲ ❋ ❊ ✹ ✷ ✼ ✵ ✵ ✻ ✵ ✺ ✹ ✵ ✵ ✹ ✸ ✶ ❂ ✵ ✿ ❀ ❁ ❂ ❃ ❄ ❅ ❆ ❇ ❈ ❉ ✵ ✻ ❲ ✎ ✒ ✑ ✒ ✎ ✎ ✒ ✑ ✒ ✑ ✏ ✍ ✏ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✺ ✑ ✎ ✤ ✝ � ✁ ✁ � ✂ ✂ ✄ ☎ ☎ ✄ ✆ ✞ ✍ ✟ ✠ ✟ ✟ ✠ ✟ ✞ ✡ ☛ ☞ ✌ ✣ ✢ ✥ ✫ ✤ ✪ ✫ ✬ ✭ ✮ ✯ ✰ ✱ ✲ ✬ ✧ ✳ ✴ ✵ ✶ ✷ ✸ ✹ ✵ ✵ ✹ ✵ ★ ✩ ✛ ✦ ✣ ✦ ✣ ✜ ✥ ✜ ✣ ✦ ✜ ✜ ✜ ✣ ✤ ✢ ✣ ✜ ✥ ✤ ✣ ✦ ✣ ✜ ✥ ❲ The Stern-Brocot representation is a digit set { φ L , φ R } is a good digit set. φ L ( x ) = Hughes, Niqui Admissibility x + 1 Digit sets x Admissible Digit Sets The Stern-Brocot representation M¨ Binary representation φ R ( x ) = x + 1 obius maps and digit sets

  29. Digit sets Admissible digit sets Admissibility The homographic algorithm Outline Digit sets 1 Binary representation M¨ obius maps and digit sets The Stern-Brocot representation Admissibility 2 Admissible digit sets The homographic algorithm Hughes, Niqui Admissible Digit Sets

  30. �� �� � Digit sets Admissible digit sets Admissibility The homographic algorithm Φ-Computability Let Φ be a good digit set. f : [0 , + ∞ ] → [0 , + ∞ ] is Φ-computable iff f has a continuous Φ ω lifting. f ♯ Φ ω Φ ω � � � � � � [0 , + ∞ ] [0 , + ∞ ] f Good digit sets aren’t very good. x �→ 2 x isn’t Stern-Brocot-computable. Hughes, Niqui Admissible Digit Sets

  31. �� �� � Digit sets Admissible digit sets Admissibility The homographic algorithm Φ-Computability Let Φ be a good digit set. f : [0 , + ∞ ] → [0 , + ∞ ] is Φ-computable iff f has a continuous Φ ω lifting. f ♯ Φ ω Φ ω � � � � � � [0 , + ∞ ] [0 , + ∞ ] f Good digit sets aren’t very good. x �→ 2 x isn’t Stern-Brocot-computable. Hughes, Niqui Admissible Digit Sets

  32. �� �� � Digit sets Admissible digit sets Admissibility The homographic algorithm Φ-Computability Let Φ be a good digit set. f : [0 , + ∞ ] → [0 , + ∞ ] is Φ-computable iff f has a continuous Φ ω lifting. f ♯ Φ ω Φ ω � � � � � � [0 , + ∞ ] [0 , + ∞ ] f Good digit sets aren’t very good. x �→ 2 x isn’t Stern-Brocot-computable. Hughes, Niqui Admissible Digit Sets

  33. � �� � � �� Digit sets Admissible digit sets Admissibility The homographic algorithm Admissible representations p : Φ ω → [0 , + ∞ ] is an admissible representation if it is continuous, surjective, maximal, i.e. for every continuous r : Φ ω Φ ω Φ ω � � � � � � ∃ � p p �� p � � � � [0 , + ∞ ] Φ ω [0 , + ∞ ] [0 , + ∞ ] r f If Φ ω → [0 , + ∞ ] is admissible, any continuous f is Φ-computable. Hughes, Niqui Admissible Digit Sets

  34. � �� � � �� Digit sets Admissible digit sets Admissibility The homographic algorithm Admissible representations p : Φ ω → [0 , + ∞ ] is an admissible representation if it is continuous, surjective, maximal, i.e. for every continuous r : Φ ω Φ ω Φ ω � � � � � � ∃ � p p �� p � � � � [0 , + ∞ ] Φ ω [0 , + ∞ ] [0 , + ∞ ] r f If Φ ω → [0 , + ∞ ] is admissible, any continuous f is Φ-computable. Hughes, Niqui Admissible Digit Sets

  35. � �� � � �� Digit sets Admissible digit sets Admissibility The homographic algorithm Admissible representations p : Φ ω → [0 , + ∞ ] is an admissible representation if it is continuous, surjective, maximal, i.e. for every continuous r : Φ ω Φ ω Φ ω � � � � � � ∃ � p p �� p � � � � [0 , + ∞ ] Φ ω [0 , + ∞ ] [0 , + ∞ ] r f If Φ ω → [0 , + ∞ ] is admissible, any continuous f is Φ-computable. Hughes, Niqui Admissible Digit Sets

  36. � �� � � �� Digit sets Admissible digit sets Admissibility The homographic algorithm Admissible representations p : Φ ω → [0 , + ∞ ] is an admissible representation if it is continuous, surjective, maximal, i.e. for every continuous r : Φ ω Φ ω Φ ω � � � � � � ∃ � p p �� p � � � � [0 , + ∞ ] Φ ω [0 , + ∞ ] [0 , + ∞ ] r f If Φ ω → [0 , + ∞ ] is admissible, any continuous f is Φ-computable. Hughes, Niqui Admissible Digit Sets

  37. Digit sets Admissible digit sets Admissibility The homographic algorithm Admissible digit sets Φ is an admissible digit set (ADS) if 1 Loosely: � S � x i is always a singleton. 2 The sets φ i ((0 , + ∞ )) cover (0 , + ∞ ). (2) replaces The sets φ i ([0 , + ∞ ]) cover [0 , + ∞ ]. for good digit sets. Theorem Admissible digit sets yield admissible representations. Not ADS! Hughes, Niqui Admissible Digit Sets

  38. Digit sets Admissible digit sets Admissibility The homographic algorithm Admissible digit sets Φ is an admissible digit set (ADS) if 1 Loosely: � S � x i is always a singleton. 2 The sets φ i ((0 , + ∞ )) cover (0 , + ∞ ). (2) replaces The sets φ i ([0 , + ∞ ]) cover [0 , + ∞ ]. for good digit sets. Theorem Admissible digit sets yield admissible representations. Not ADS! Hughes, Niqui Admissible Digit Sets

  39. Digit sets Admissible digit sets Admissibility The homographic algorithm Admissible digit sets   Φ is an admissible digit set (ADS) if  φ c 1 Loosely: � S � x i is always a singleton.   2 The sets φ i ((0 , + ∞ )) cover (0 , + ∞ ).  φ b    (2) replaces      The sets φ i ([0 , + ∞ ]) cover [0 , + ∞ ].     for good digit sets. φ a     Theorem      Admissible digit sets yield admissible representations. Not ADS! Hughes, Niqui Admissible Digit Sets

  40. Digit sets Admissible digit sets Admissibility The homographic algorithm Admissible digit sets   Φ is an admissible digit set (ADS) if  φ c 1 Loosely: � S � x i is always a singleton.   2 The sets φ i ((0 , + ∞ )) cover (0 , + ∞ ).  φ b    (2) replaces      The sets φ i ([0 , + ∞ ]) cover [0 , + ∞ ].     for good digit sets. φ a     Theorem      Admissible digit sets yield admissible representations. Not ADS! Hughes, Niqui Admissible Digit Sets

  41. Digit sets Admissible digit sets Admissibility The homographic algorithm Admissible digit sets   Φ is an admissible digit set (ADS) if  φ c 1 Loosely: � S � x i is always a singleton.   2 The sets φ i ((0 , + ∞ )) cover (0 , + ∞ ).  φ b    (2) replaces      The sets φ i ([0 , + ∞ ]) cover [0 , + ∞ ].     for good digit sets. φ a     Theorem      Admissible digit sets yield admissible representations. Not ADS! Hughes, Niqui Admissible Digit Sets

  42. Digit sets Admissible digit sets Admissibility The homographic algorithm The Stern-Brocot representation is not ADS S-B is a good digit set. . .   but not an admissible digit set.       φ R  φ L ([0 , + ∞ ]) = [0 , 1]       φ R ([0 , + ∞ ]) = [1 , + ∞ ]     Solution: Add φ M ( x ) = 2 x +1  x +2 .    φ L        Hughes, Niqui Admissible Digit Sets

  43. Digit sets Admissible digit sets Admissibility The homographic algorithm The Stern-Brocot representation is not ADS S-B is a good digit set. . .   but not an admissible digit set.       φ R  φ L ((0 , + ∞ )) = (0 , 1)       φ R ((0 , + ∞ )) = (1 , + ∞ )     Solution: Add φ M ( x ) = 2 x +1  x +2 .    φ L        Hughes, Niqui Admissible Digit Sets

  44. Digit sets Admissible digit sets Admissibility The homographic algorithm The Stern-Brocot representation is not ADS S-B is a good digit set. . .   but not an admissible digit set.       φ R  φ L ((0 , + ∞ )) = (0 , 1)           φ R ((0 , + ∞ )) = (1 , + ∞ ) φ M        Solution: Add φ M ( x ) = 2 x +1  x +2 .    φ L        Hughes, Niqui Admissible Digit Sets

  45. � �� Digit sets Admissible digit sets Admissibility The homographic algorithm Why this subsection doesn’t matter. Let Φ be an ADS. Aim: Construct an algorithm H ( A , − ) computing M¨ obius maps A . But Φ ω → [0 , + ∞ ] is an admissible representation. Any continuous f : [0 , + ∞ ] → [0 , + ∞ ] lifts to Φ ω . Φ ω Φ ω � � � � � p �� p � [0 , + ∞ ] [0 , + ∞ ] f But formal verifications require explicit algorithms. Hughes, Niqui Admissible Digit Sets

  46. � �� Digit sets Admissible digit sets Admissibility The homographic algorithm Why this subsection doesn’t matter. Let Φ be an ADS. Aim: Construct an algorithm H ( A , − ) computing M¨ obius maps A . But Φ ω → [0 , + ∞ ] is an admissible representation. Any continuous f : [0 , + ∞ ] → [0 , + ∞ ] lifts to Φ ω . Φ ω Φ ω � � � � � p �� p � [0 , + ∞ ] [0 , + ∞ ] f But formal verifications require explicit algorithms. Hughes, Niqui Admissible Digit Sets

  47. � �� Digit sets Admissible digit sets Admissibility The homographic algorithm Why this subsection doesn’t matter. Let Φ be an ADS. Aim: Construct an algorithm H ( A , − ) computing M¨ obius maps A . But Φ ω → [0 , + ∞ ] is an admissible representation. Any continuous f : [0 , + ∞ ] → [0 , + ∞ ] lifts to Φ ω . Φ ω Φ ω � � � � � p �� p � [0 , + ∞ ] [0 , + ∞ ] f But formal verifications require explicit algorithms. Hughes, Niqui Admissible Digit Sets

  48. � �� Digit sets Admissible digit sets Admissibility The homographic algorithm Why this subsection does matter. Let Φ be an ADS. Aim: Construct an algorithm H ( A , − ) computing M¨ obius maps A . But Φ ω → [0 , + ∞ ] is an admissible representation. Any continuous f : [0 , + ∞ ] → [0 , + ∞ ] lifts to Φ ω . Φ ω Φ ω � � � � � p �� p � [0 , + ∞ ] [0 , + ∞ ] f But formal verifications require explicit algorithms. Hughes, Niqui Admissible Digit Sets

  49. �� � Digit sets Admissible digit sets Admissibility The homographic algorithm An algorithm for computing M¨ obius maps Let M be the set of refining M¨ obius maps. We explicitly defined H : M × Φ ω → Φ ω so that H ( A , − ) Φ ω Φ ω � � � � � � p �� p � [0 , + ∞ ] [0 , + ∞ ] A H is the homographic algorithm . Hughes, Niqui Admissible Digit Sets

  50. �� � Digit sets Admissible digit sets Admissibility The homographic algorithm An algorithm for computing M¨ obius maps Let M be the set of refining M¨ obius maps. We explicitly defined H : M × Φ ω → Φ ω so that H ( A , − ) Φ ω Φ ω � � � � � � p �� p � [0 , + ∞ ] [0 , + ∞ ] A H is the homographic algorithm . Hughes, Niqui Admissible Digit Sets

  51. �� � Digit sets Admissible digit sets Admissibility The homographic algorithm An algorithm for computing M¨ obius maps Let M be the set of refining M¨ obius maps. We explicitly defined H : M × Φ ω → Φ ω so that H ( A , − ) Φ ω Φ ω � � � � � � p �� p � [0 , + ∞ ] [0 , + ∞ ] A H is the homographic algorithm . Hughes, Niqui Admissible Digit Sets

  52. Digit sets Admissible digit sets Admissibility The homographic algorithm The very (very) rough idea behind the algorithm (but with pictures) H is the homographic algorithm . Least fixed point R construction that R outputs a digit L when possible or absorbs more input M when needed. A Hughes, Niqui Admissible Digit Sets

  53. Digit sets Admissible digit sets Admissibility The homographic algorithm The very (very) rough idea behind the algorithm (but with pictures) H is the homographic algorithm . Least fixed point R construction that R outputs a digit  L when possible or         absorbs more input   A φ L M when needed. A        Hughes, Niqui Admissible Digit Sets

  54. Digit sets Admissible digit sets Admissibility The homographic algorithm The very (very) rough idea behind the algorithm (but with pictures) H is the homographic algorithm . Least fixed point R construction that R outputs a digit  L when possible or         absorbs more input   A φ L L M when needed. A ′        Hughes, Niqui Admissible Digit Sets

  55. Digit sets Admissible digit sets Admissibility The homographic algorithm The very (very) rough idea behind the algorithm (but with pictures) H is the homographic algorithm .      Least fixed point    R construction that A’  R  outputs a digit      L  when possible or       absorbs more input  φ L L M when needed. A ′        Hughes, Niqui Admissible Digit Sets

  56. Digit sets Admissible digit sets Admissibility The homographic algorithm The very (very) rough idea behind the algorithm (but with pictures) H is the homographic algorithm .      Least fixed point    construction that A’  R  outputs a digit     R   when possible or       absorbs more input  φ L L M when needed. A ′′        Hughes, Niqui Admissible Digit Sets

  57. Digit sets Admissible digit sets Admissibility The homographic algorithm Er, so what did we do? Aim: investigate representations via M¨ obius maps Found sufficient conditions for total representations total, admissible representations modified Stern-Brocot to do formal arithmetic explicitly computed homographic algorithm for ADS Hughes, Niqui Admissible Digit Sets

  58. Digit sets Admissible digit sets Admissibility The homographic algorithm Er, so what did we do? Aim: investigate representations via M¨ obius maps Found sufficient conditions for total representations total, admissible representations modified Stern-Brocot to do formal arithmetic explicitly computed homographic algorithm for ADS Hughes, Niqui Admissible Digit Sets

  59. Digit sets Admissible digit sets Admissibility The homographic algorithm Er, so what did we do? Aim: investigate representations via M¨ obius maps Found sufficient conditions for total representations total, admissible representations modified Stern-Brocot to do formal arithmetic explicitly computed homographic algorithm for ADS Hughes, Niqui Admissible Digit Sets

  60. Digit sets Admissible digit sets Admissibility The homographic algorithm Er, so what did we do? Aim: investigate representations via M¨ obius maps Found sufficient conditions for total representations total, admissible representations modified Stern-Brocot to do formal arithmetic explicitly computed homographic algorithm for ADS Hughes, Niqui Admissible Digit Sets

  61. Digit sets Admissible digit sets Admissibility The homographic algorithm Er, so what did we do? Aim: investigate representations via M¨ obius maps Found sufficient conditions for total representations total, admissible representations modified Stern-Brocot to do formal arithmetic explicitly computed homographic algorithm for ADS Hughes, Niqui Admissible Digit Sets

  62. Digit sets Admissible digit sets Admissibility The homographic algorithm Er, so what did we do? Aim: investigate representations via M¨ obius maps Found sufficient conditions for total representations total, admissible representations modified Stern-Brocot to do formal arithmetic explicitly computed homographic algorithm for ADS Hughes, Niqui Admissible Digit Sets

  63. Appendix Additional material Outline Appendix 3 Additional material Hughes, Niqui Admissible Digit Sets

  64. Appendix Additional material M¨ obius maps and matrices A ( x ) = ax + b cx + d � a � b Same thing: A matrix M A = c d Let x , y ∈ [0 , + ∞ ). � � x � x if y � = 0, y �→ y + ∞ else. � x � A ( x y )“ = ” M A · y Composition of M¨ obius maps is the same as multiplication of matrices. Hughes, Niqui Admissible Digit Sets

  65. Appendix Additional material M¨ obius maps and matrices A ( x ) = ax + b cx + d � a � b Same thing: A matrix M A = c d Let x , y ∈ [0 , + ∞ ). � � x � x if y � = 0, y �→ y + ∞ else. � x � A ( x y )“ = ” M A · y Composition of M¨ obius maps is the same as multiplication of matrices. Hughes, Niqui Admissible Digit Sets

  66. Appendix Additional material M¨ obius maps and matrices A ( x ) = ax + b cx + d � a � b Same thing: A matrix M A = c d Let x , y ∈ [0 , + ∞ ). � � x � x if y � = 0, y �→ y + ∞ else. � x � A ( x y )“ = ” M A · y Composition of M¨ obius maps is the same as multiplication of matrices. Hughes, Niqui Admissible Digit Sets

  67. Appendix Additional material M¨ obius maps and matrices A ( x ) = ax + b cx + d � a � b Same thing: A matrix M A = c d Let x , y ∈ [0 , + ∞ ). � � x � x if y � = 0, y �→ y + ∞ else. � x � A ( x y )“ = ” M A · y Composition of M¨ obius maps is the same as multiplication of matrices. Hughes, Niqui Admissible Digit Sets

  68. Appendix Additional material Translating φ 0 , φ 1 to [0 , + ∞ ] 1 φ 0 ( x ) = x 2 φ 1 ( x ) = x + 1 2 1 1 2 1 4 0 0 Hughes, Niqui Admissible Digit Sets

  69. Appendix Additional material Translating φ 0 , φ 1 to [0 , + ∞ ] + ∞ φ 0 ( x ) = x 2 φ 1 ( x ) = x + 1 2 1 1 1 3 0 0 Hughes, Niqui Admissible Digit Sets

  70. Appendix Additional material Translating φ 0 , φ 1 to [0 , + ∞ ] + ∞ φ 0 ( x ) = x 2 φ 1 ( x ) = x + 1 2 1 1 [0 , 1] = φ 0 ([0 , + ∞ ]) [1 3 , 1] = φ 0 ◦ φ 1 ([0 , + ∞ ]) 1 3 1 π − 1“ = ” . 010100010 . . . 0 0 Hughes, Niqui Admissible Digit Sets

  71. Appendix Additional material Good digit sets have shrinking diameters. + ∞ + ∞ + ∞ φ 0 ( x ) = x 2 3 φ 1 ( x ) = x + 1 2 1 1 [0 , + ∞ ] inherits a metric from [0 , 1]. We use this metric to measure 1 3 the “shrinking” of φ i 1 φ i 2 . . . φ i n ([0 , + ∞ ]) . 0 0 0 Hughes, Niqui Admissible Digit Sets

  72. Appendix Additional material Good digit sets have shrinking diameters. + ∞ + ∞ + ∞ φ 0 ( x ) = x 2 3 φ 1 ( x ) = x + 1 2 1 1 [0 , + ∞ ] inherits a metric from [0 , 1]. We use this metric to measure 1 3 the “shrinking” of φ i 1 φ i 2 . . . φ i n ([0 , + ∞ ]) . 0 0 0 Hughes, Niqui Admissible Digit Sets

  73. Appendix Additional material Good digit sets have shrinking diameters. + ∞ + ∞ + ∞ B (Φ , n ) measures the maximum    diameter for n -length sequences.    φ 1 φ 1      φ 1 3    B (Φ , 0) = 1   φ 1 φ 0    B (Φ , 1) = 1    1  1 2     φ 0 φ 1 B (Φ , 2) = 1      4 1 φ 0  3   Good: j →∞ B (Φ , j ) = 0 lim   φ 0 φ 0      0 0 0 Hughes, Niqui Admissible Digit Sets

  74. Appendix Additional material Good digit sets have shrinking diameters. + ∞ + ∞ + ∞ B (Φ , n ) measures the maximum    diameter for n -length sequences.    φ 1 φ 1      φ 1 3    B (Φ , 0) = 1   φ 1 φ 0    B (Φ , 1) = 1    1  1 2     φ 0 φ 1 B (Φ , 2) = 1      4 1 φ 0  3   Good: j →∞ B (Φ , j ) = 0 lim   φ 0 φ 0      0 0 0 Hughes, Niqui Admissible Digit Sets

  75. Appendix Additional material The rough idea behind the algorithm When A ( x ) ∈ φ j ((0 , + ∞ )) no matter what x is, output the digit φ j . Otherwise, absorb a digit from x to refine our calculation. Define A ⊑ φ j ⇔ A ([0 , + ∞ ]) ⊆ φ j ([0 , + ∞ ]).  φ 0 H ( φ − 1 ◦ A , φ i 1 φ i 2 . . . ) if A ⊑ φ 0   0   φ 1 H ( φ − 1  ◦ A , φ i 1 φ i 2 . . . ) else if A ⊑ φ 1  1   . . H ( A , φ i 1 φ i 2 . . . ) := .   φ k H ( φ − 1  ◦ A , φ i 1 φ i 2 . . . ) else if A ⊑ φ k  k     H ( A ◦ φ i , φ i 2 φ i 3 . . . ) otherwise . Hughes, Niqui Admissible Digit Sets

Recommend


More recommend