Adjoints MEC651 denis.sipp@onera.fr Adjoints 1
Outline - Governing equations - Asymptotic development ο Order π 0 : Base-flow ο Order π 1 : Global modes - Bi-orthogonal basis and adjoint global modes ο Definition of adjoint global modes ο Optimal initial condition ο Optimal forcing in stable flow - Adjoint operator ο Definition ο Adjoint global modes as solutions of adjoint eigen-problem - Adjoint linearized Navier-Stokes operator ο Adjoint of linearized advection operator ο Adjoint of Stokes operator ο Adjoint global modes of cylinder flow MEC651 denis.sipp@onera.fr Adjoints 2
Governing equations Incompressible Navier-Stokes equations: π π’ π£ + π£π π¦ π£ + π€π π§ π£ = βπ π¦ π + π π π¦π¦ π£ + π π§π§ π£ + π π π’ π€ + π£π π¦ π€ + π€π π§ π€ = βπ π§ π + π π π¦π¦ π€ + π π§π§ π€ + π βπ π¦ π£ β π π§ π€ = 0 Can be recast into: β¬π π’ π₯+ 1 2 πͺ π₯, π₯ + βπ₯ = π where: π₯ = π£ π π = π 0 β¬ = 1 0 0 , 0 πͺ π₯ 1 , π₯ 2 = π£ 1 β πΌπ£ 2 + π£ 2 β πΌπ£ 1 0 βπΞ() πΌ() β = βπΌ β () 0 Boundary conditions: Dirichlet, Neumann, Mixed MEC651 denis.sipp@onera.fr Adjoints 3
Some properties a) πͺ π₯ 1 , π₯ 2 = πͺ π₯ 2 , π₯ 1 π 2 b) 1 1 2 πͺ π₯ 0 + πππ₯, π₯ 0 + πππ₯ = 2 πͺ π₯ 0 , π₯ 0 + π πͺ π₯ 0 , ππ₯ + 2 πͺ ππ₯, ππ₯ + β― Hessian Jacobian =πͺ π₯0 ππ₯ π₯ 0 ππ₯ = πͺ π₯ 0 , ππ₯ = ππ£ β πΌπ£ 0 + π£ 0 β πΌππ£ c) πͺ 0 d) β¬π₯ = β¬ π£ π = π£ 0 e) π π’ π£ + π£ β πΌπ£ = βπΌπ + ππΌ 2 π£ β βπΌ 2 π = πΌ β π£ β πΌπ£ , π π π = ππΌ 2 π£ β π on solid walls . Hence, p is a function of u and should not be considered as a degree of freedom of the flow. β π£ 2 + π€ 1 β π€ 2 ππ¦ππ§ = β¬ (π₯ 1 β β¬π₯ 2 )ππ¦ππ§ so f) Scalar-product: < π₯ 1 , π₯ 2 > = β¬ π£ 1 that < π₯, π₯ > is the energy. MEC651 denis.sipp@onera.fr Adjoints 4
Outline - Governing equations - Asymptotic development ο Order π 0 : Base-flow ο Order π 1 : Global modes - Bi-orthogonal basis and adjoint global modes ο Definition of adjoint global modes ο Optimal initial condition ο Optimal forcing in stable flow - Adjoint operator ο Definition ο Adjoint global modes as solutions of adjoint eigen-problem - Adjoint linearized Navier-Stokes operator ο Adjoint of linearized advection operator ο Adjoint of Stokes operator ο Adjoint global modes of cylinder flow MEC651 denis.sipp@onera.fr Adjoints 5
Asymptotic development Solution: π₯ π’ = π₯ 0 + ππ₯ 1 π’ + β― with Ο΅ βͺ 1 Governing equations: β¬π π’ π₯+ 1 2 πͺ π₯, π₯ + βπ₯ = π Introduce solution into governing eq:: β¬π π’ (π₯ 0 +ππ₯ 1 + β― )+ 1 2 πͺ π₯ 0 + ππ₯ 1 + β― , π₯ 0 + ππ₯ 1 + β― + β(π₯ 0 +ππ₯ 1 + β― ) = π 1 2 πͺ π₯ 0 , π₯ 0 + βπ₯ 0 = π at order π(1) β¬π π’ π₯ 1 + 1 2 [πͺ π₯ 1 , π₯ 0 + πͺ π₯ 0 , π₯ 1 ] + βπ₯ 1 = 0 at order π(π) β πͺ π₯0 π₯ 1 π₯ 0 π₯ 2 + βπ₯ 2 = β 1 2 πͺ π₯ 1 , π₯ 1 at order π(π 2 ) β¬π π’ π₯ 2 +πͺ MEC651 denis.sipp@onera.fr Adjoints 6
Oder π 0 : Base-flow Definition: πΊ π₯ = 1 2 πͺ π₯, π₯ + βπ₯ β π π₯ π’ = π₯ 0 + ππ₯ 1 (π’) + β― Non-linear equilibrium point : 1 2 πͺ π₯ 0 , π₯ 0 + βπ₯ 0 = π π₯ π₯ 0 How to compute a base-flow ? Newton iteration: 1 2 πͺ π₯ 0 + ππ₯ 0 , π₯ 0 + ππ₯ 0 + β(π₯ 0 +ππ₯ 0 ) = π Linearization: πͺ π₯ 0 , ππ₯ 0 + βππ₯ 0 = π β 1 2 πͺ π₯ 0 , π₯ 0 β βπ₯ 0 β1 π β 1 β ππ₯ 0 = πͺ π₯ 0 + β 2 πͺ π₯ 0 , π₯ 0 β βπ₯ 0 MEC651 denis.sipp@onera.fr Adjoints 7
Oder π 0 : Base-flow The case of cylinder flow ππ = 47 Streamwise velocity field of base-flow. MEC651 denis.sipp@onera.fr Adjoints 8
Order π 1 : Global modes Definition π₯ π’ = π₯ 0 + ππ₯ 1 (π’) + β― Linear governing equation: β¬π π’ π₯ 1 + πͺ π₯ 0 π₯ 1 + βπ₯ 1 = 0 Solution π₯ 1 under the form: π₯ 1 = π ππ’ π₯ + c.c This leads to : πβ¬π₯ + πͺ π₯ 0 + β π₯ = 0 Eigenvalue: π = π + ππ Eigenvector: = π₯ π₯ r + iw π Real solution: π₯ 1 = π ππ’ π₯ + c.c = 2π ππ’ (cos ππ’ π₯ π β sin ππ’ π₯ π ) MEC651 denis.sipp@onera.fr Adjoints 9
Order π 1 : Global modes How to compute global modes ? Eigenvalue problem solved with shift-invert strategy: - Power method, easy to find largest magnitude eigenvalues of π΅π¦ = ππ¦ . For this, evaluate π΅ π π¦ 0 To find eigenvalues of π΅ closest to zero, search largest magnitude eigenvalues of - π΅ β1 : π΅ β1 π¦ = π β1 π¦ . For this, evaluate π΅ β1 π π¦ 0 To find eigenvalues of π΅ closest to π‘ , search largest magnitude eigenvalues of - π΅ β π‘π½ β1 π π¦ 0 π΅ β π‘π½ β1 : π΅ β π‘π½ β1 π¦ = π β π‘ β1 π¦ . For this, evaluate - Instead of power-method, use Krylov subspaces -> Arnoldi technique - Cost of algorithm = cost of several complex matrix inversions MEC651 denis.sipp@onera.fr Adjoints 10
Order π 1 : Global modes Case of cylinder flow Real part of cross-stream velocity field Spectrum ππ = 47 Marginal eigenmode MEC651 denis.sipp@onera.fr Adjoints 11
The Ginzburg-Landau eq. We consider the linear Ginzburg-Landau equation π π’ π₯ 1 + βπ₯ 1 = 0 where π¦ 2 β = ππ π¦ β π π¦ β πΏπ π¦π¦ , π π¦ = ππ 0 + π 0 β π 2 2 . Here π, πΏ, π 0 , π 0 and π 2 are positive real constants. The state π₯(π¦, π’) is a complex variable on ββ < π¦ < +β such that |π₯| β 0 as π¦ β β . In the following, +β π₯ π , π₯ π = π₯ π π¦ β π₯ π π¦ ππ¦ . ββ 1/ What do the different terms in the Ginzburg Landau equation represent? MEC651 denis.sipp@onera.fr Adjoints 12
The Ginzburg-Landau eq. 1 2πΏ π¦β π2π¦2 π π 2 π 4 and π = 2/ Show that π₯ (π¦) = ππ 2 with π = verifies ππ₯ + βπ₯ = 0 . π2 2πΏ 1 1 πΏ2π2 8 π 4 π What is the eigenvalue π associated to this eigenvector? The constant π has been selected so that π₯ , π₯ = 1 . 3/ Show that the flow is unstable if the constant π 0 is chosen such that: π 0 > π π , where π 2 πΏπ 2 π π = 4πΏ + 2 . 2πΏ π¦β π2π¦2 π π π = iπ 0 + π 0 β π 2 πΏπ 2 4πΏ β 2π + 1 2 , π₯ π = π π πΌ π ππ¦ π 2 Nota: are all the eigenvalues/eigenvectors of β , πΌ π being Hermite polynomials. MEC651 denis.sipp@onera.fr Adjoints 13
Outline - Governing equations - Asymptotic development ο Order π 0 : Base-flow ο Order π 1 : Global modes - Bi-orthogonal basis and adjoint global modes ο Definition of adjoint global modes ο Optimal initial condition ο Optimal forcing in stable flow - Adjoint operator ο Definition ο Adjoint global modes as solutions of adjoint eigen-problem - Adjoint linearized Navier-Stokes operator ο Adjoint of linearized advection operator ο Adjoint of Stokes operator ο Adjoint global modes of cylinder flow MEC651 denis.sipp@onera.fr Adjoints 14
Bi-orthogonal basis and adjoint global modes (1/3) In finite dimension Global mod odes: π΅π₯ π = π π π₯ π The eigenvectors π₯ π form a basis: π₯ = π½ π w i π Definition of adjoint global modes: with <> as a given scalar-product (say β π₯ 2 ), there exists for each π½ π a unique π₯ < π₯ 1 , π₯ 2 > = π₯ 1 π such that π½ π =< π₯ π , π₯ > for all π₯ . The adjoint global modes are the structures π₯ π . In the following: π₯ π , π₯ π = 1 . Properties: ο π₯ π and w j are bi-orthogonal bases: they verify π₯ π = < π₯ π , π₯ π > w i and so π β π = π½ ) < π₯ π , w j > = π ππ (in matrix notations π 1 1 ο Cauchy-Lifschitz: 1 = < π₯ π , w i > β€< π₯ π , π₯ π > 2 < π₯ π , π₯ π > 2 1 1 Hence: < π₯ π , π₯ π > 2 β₯ 1 and cos angle π₯ π , π₯ π = 1 <π₯ π ,π₯ π > 2 MEC651 denis.sipp@onera.fr Adjoints 15
Bi-orthogonal basis and adjoint global modes (2/3) In finite dimension π₯ = (π₯ 1 β π₯)π₯ 1 + (π₯ 2 β π₯)π₯ 2 Def of π₯ 1 : π₯ 2 π₯ 1 β π₯ 1 = 1 π₯ 1 β π₯ 2 = 0 π₯ 2 Def of π₯ 2 : π₯ 2 β π₯ 2 = 1 π₯ 2 β π₯ 1 = 0 π₯ 1 π₯ 1 β π = π½ π = W ββ1 Method 1 : π β1 β π β1 = π π β π β π β π = π½ β π = π β π = π π β π Method 2 : π Method 3 : adjoint global modes MEC651 denis.sipp@onera.fr Adjoints 16
Recommend
More recommend