accurate object shape and pose
play

Accurate Object Shape and Pose M. Zeeshan Zia 1 Michael Stark 2,3 - PowerPoint PPT Presentation

Revisiting 3D Geometric Models for Accurate Object Shape and Pose M. Zeeshan Zia 1 Michael Stark 2,3 Bernt Schiele 3 Konrad Schindler 1 3 Max-Planck-Institute for Informatics 1 Photogrammetry and Remote Sensing Laboratory 2 Artificial Intelligence


  1. Revisiting 3D Geometric Models for Accurate Object Shape and Pose M. Zeeshan Zia 1 Michael Stark 2,3 Bernt Schiele 3 Konrad Schindler 1 3 Max-Planck-Institute for Informatics 1 Photogrammetry and Remote Sensing Laboratory 2 Artificial Intelligence Lab Saarbrücken, Germany Swiss Federal Institute of Technology (ETH), Zurich Stanford University, USA

  2. Current object models: coarse grained estimates 1 Zeeshan Zia

  3. Our goal: finer-grained models to aid scene-level reasoning 2 Zeeshan Zia

  4. Revival of 3D geometric representations 1970 [Marr, Nishihara ’ 78] 1980 [ Brooks ’81] [Pentland ’ 86] [ Lowe ’87] 1990 [Koller, Daniilidis, Nagel ’93] [Sullivan, Worrall, Ferryman ’ 95] [Haag, Nagel ’ 99] 2000 2010 3 Zeeshan Zia

  5. Revival of 3D geometric representations 1970 [Marr, Nishihara ’ 78] 1980 [ Brooks ’81] [Pentland ’ 86] [ Lowe ’87] 1990 [Koller, Daniilidis, Nagel ’93] [Sullivan, Worrall, Ferryman ’ 95] [Haag, Nagel ’ 99] 2000 [Hoiem, Efros , Hebert ’08] [Ess, Leibe, Schindler, Van Gool ’09] [Wang, Gould, Koller ’ 10] [Hedau, Hoiem, Forsyth ’ 10] [Barinova, Lempitsky, Tretyak, Kohli ’ 10] [Gupta, Efros, Hebert ’ 10] [Wojek, Roth, Schindler, Schiele ’ 10] 2010 3 Zeeshan Zia

  6. Related work in viewpoint invariant detection Multiple, viewpoint dependent representations (connected in different ways) [Thomas et al., ’06] 1) [Yan, Khan, Shah ’07] [Ozuysal, Lepetit, Fua ’ 09] [Nachimson, Basri ’ 09] [Su, Sun, Fei-Fei, Savarese ’ 09] [Gu, Ren ’ 10] [Stark, Goesele, Schiele ’ 10] 1) 2) Explicit 3D geometry representation [Liebelt, Schmid ’ 10] 2) [Sun, Xu, Bradski, Savarese ’ 10] [Gupta, Efros, Hebert ’ 10] [Chen, Kim, Cipolla ‘10] [Gupta, Satkin, Efros, Hebert ’11] 4 Zeeshan Zia

  7. Overview Simplify 3D Active Shape Model PCA 3D CAD Models 5 Zeeshan Zia

  8. Overview Simplify 3D Active Shape Model PCA 3D CAD Models Render Positive examples (per part) 5 Zeeshan Zia

  9. Overview Simplify 3D Active Shape Model PCA 3D CAD Models Render Positive examples (per part) AdaBoost Negative examples (background) 5 Zeeshan Zia

  10. Overview Simplify 3D Active Shape Model PCA 3D CAD Models Render Positive examples (per part) AdaBoost Negative examples (background) Detection maps Test image 5 Zeeshan Zia

  11. Overview Simplify 3D Active Shape Model PCA Inference 3D CAD Models Render Positive examples (per part) AdaBoost Negative examples (background) Detection maps Test image 5 Zeeshan Zia

  12. Representation: 3D geometry  Simplified 3D wireframes : fixed number of vertices 6 Zeeshan Zia

  13. Learning: 3D geometry Eigen-Cars  Principal Components Analysis (PCA)  Tightly constrained global geometry 7 Zeeshan Zia

  14. Representation: Local appearance  Accurate foreground shape  Very cheap training data, dense sampling of viewpoints! 8 Zeeshan Zia

  15. Learning: Local appearance  Dense Shape Context features [Belongie , Malik. ’00]  AdaBoost classifiers (per part-viewpoint) - + … …  Annotated vertices are our ‘parts’. Related work: [Andriluka, Roth, Schiele ’09] 9 Zeeshan Zia

  16. Inference Test Image 10 Zeeshan Zia

  17. Inference Test Image Detection … … maps 10 Zeeshan Zia

  18. Inference Test Image Detection … … maps Sample 3D wireframes, project, compute image likelihood … … 10 Zeeshan Zia

  19. Inference Detection image evidence Projection matrix … … maps local part scale recognition hypothesis part likelihood shape of wireframe self-occlusion indicator camera focal length Sample 3D cars, project, compute image likelihood viewpoint parameters, azimuth and elevation image space translation and scaling … … 11 Zeeshan Zia

  20. Experimental evaluation – Test Dataset  Evaluations on 3D Object Classes dataset [Savarese et al., 2007]  Car class (8 azimuth angles, 2 elevation angles, 3 distances, varying backgrounds) – 240 images, 5 cars 12 Zeeshan Zia

  21. Experimental evaluation - Training  38 3D CAD models  36 vertices as model points, 20 annotations per model (due to symmetry).  Separate local part shape detectors trained from: - 72 different azimuth angles, - 2 different elevation angles (7.5 ° , 15 ° from ground plane) 13 Zeeshan Zia

  22. Experimental evaluation - Initialization 20 ° Two initializations :  Stark et al., 2010 (full system)  True initial value (tight bounding box, rough azimuth) 14 Zeeshan Zia

  23. Experimental evaluation - Inference 35 ° 35 ° 20 ° 14 Zeeshan Zia

  24. Example wireframe fits Parts correctly localized Full system: 74.2% True initial value: 83.4% 15 Zeeshan Zia

  25. Fine-grained 3D geometry estimation  Accurate estimation of closest 3D CAD model, camera parameters, and ground plane 16 Zeeshan Zia

  26. Ultra-wide baseline matching  UW-Baseline matching using only model fits (corresponding part locations)  Impossible using interest point matching Related work: [Bao, Savarese ’11] 17 Zeeshan Zia

  27. Ultra-wide baseline matching  UW-Baseline matching using only model fits (corresponding part locations)  Impossible using interest point matching Related work: [Bao, Savarese ’11] 18 Zeeshan Zia

  28. Ultra-wide baseline matching No. of Part True initial Full Azimuth Image SIFT detections value system Difference Pairs only 45 ° 53 91% 55% 2% 27% 90 ° 35 91% 60% 0% 27% 135 ° 29 69% 52% 0% 10% 180 ° 17 59% 41% 0% 24%  Correct fit = Sampson error < E max on ground truth correspondences  3D Geometric model improves significantly over part detections only 19 Zeeshan Zia

  29. Multiview recognition  Rescored hypotheses  Good 2D localization 20 Zeeshan Zia

  30. Continuous viewpoint estimation Average Average Total True % correct error error Images Positives azimuth azimuth elevation 4.2 ° 4.0 ° Stark et al., 2010 48 46 67.4% 3.8 ° 3.6 ° Full system 48 45 73.3% 4.2 ° 3.6 ° True initial value* 48 48 89.6%  Comparison against ground truth pose, manually labeled.  Full system improves 6% over Stark et al., 2010. * Approximate pose initialization quantized to 45 ° steps 21 Zeeshan Zia

  31. Conclusion  3D deformable object class model have potential for accurate geometric reasoning on scene level. - accurate object localization - geometric parts in 2D - 3D pose estimation  Novel application examples - fine-grained object categorization - ultra-wide baseline matching  Future extensions - efficient multi-class methods for part likelihoods - analyze importance of geometric model vs. local appearance - occlusion invariance 22 Zeeshan Zia

  32. OLD SLIDES

  33. Learning: 3D Geometry any wireframe mean wireframe weight of k th principal component standard deviation of j th principal component Eigen-Cars direction of j th principal component residual (if r < m) Zeeshan Zia

  34. Part localization correct localization ~ localized within 4% of car length from ground truth Zeeshan Zia

  35. Experimental evaluation - Inference 35 ° 35 ° 20 ° 14 Zeeshan Zia

  36. Experimental evaluation - Inference 35 ° 35 ° 20 ° 14 Zeeshan Zia

Recommend


More recommend