abstract machines for argumentation
play

Abstract Machines for Argumentation Logic and Interactions 2012, - PowerPoint PPT Presentation

Abstract Machines for Argumentation Logic and Interactions 2012, Week 2 Kurt Ranalter SIAG Bolzano/Bozen CIRM, 10/02/2012 Overview Introduction 1 Abstract machines 2 Argumentation 3 Conclusion 4 Introduction Summary of content


  1. Abstract Machines for Argumentation Logic and Interactions 2012, Week 2 Kurt Ranalter SIAG Bolzano/Bozen CIRM, 10/02/2012

  2. Overview Introduction 1 Abstract machines 2 Argumentation 3 Conclusion 4

  3. Introduction Summary of content Related work and motivations Aim of talk and contributions

  4. Introduction Summary of content Related work and motivations Aim of talk and contributions Lecomte and Quatrini Ludics and its applications to natural language semantics (in LNAI 5514, 2009) A theory of meaning that is based on ludics convergence via daimon meaning via orthogonality Match between rules of ludics and moves in dialogue rules of ludics: positive vs negative roles in dialogue: speaker vs hearer actions in dialogue: sender vs receiver Put these aspects together by means of normalisation

  5. Introduction Curien and Herbelin Abstract machines for dialogue games (in Panoramas et Synthèses 27, 2009) Proofs in ludics regarded as abstract Böhm trees Various abstract machines for computing with ABTs

  6. Introduction Curien and Herbelin Abstract machines for dialogue games (in Panoramas et Synthèses 27, 2009) Proofs in ludics regarded as abstract Böhm trees Various abstract machines for computing with ABTs Combining these strands Want to extend duality to abstract Böhm trees rules of ludics: positive vs negative roles in dialogue: speaker vs hearer actions in dialogue: sender vs receiver abstract Böhm trees: replies vs queries Towards computational account for modelling dialogue normalisation by means of geometric abstract machine ABTs more expressive than MLL-based variant of ludics

  7. Introduction Basaldella and Faggian Ludics with repetitions: exponentials, interactive types and completeness (in LMCS 7, 2011) An extension of ludics that deals with exponentials Add pointers to trace occurrences of subformulae

  8. Introduction Basaldella and Faggian Ludics with repetitions: exponentials, interactive types and completeness (in LMCS 7, 2011) An extension of ludics that deals with exponentials Add pointers to trace occurrences of subformulae Relation to our framework Relevant differences mostly of technical nature normalisation via view abstract machine pointer interaction not a primary concern main focus on repetition of actions Should be possible to translate all of our examples Pointer interaction one of the central topics of this talk

  9. Abstract machines Summary of content Sketch of formal definitions How does GAM actually work?

  10. Abstract machines Summary of content Sketch of formal definitions How does GAM actually work? General considerations Operational account of concepts from game semantics Crisp graphical representation for abstract Böhm trees interaction may be seen as interleaved tree traversal graphical representation vs concrete implementation Small number of rules leads to compact implementation Rapid prototyping as main benefit of implementation a potential framework for developing applications why not abstract Böhm trees as data structures?

  11. � � � � � � � � � � � � � Abstract machines Abstract Böhm trees ���� ���� a 7 Two types of moves queries: a 0 , a 2 , a 4 , a 6 . . a 6 . . . . replies: a 1 , a 3 , a 5 , a 7 Pointer conditions ���� ���� ���� ���� from reply to query a 3 a 5 only within branch Branching condition a 2 a 4 only after replies (Counter-)strategies ���� ���� a 1 ( ∗ ) is counterstrategy strategy when 1) a 0 = ⋆ and 2) no pointers to ⋆ a 0 ( ∗ )

  12. Abstract machines Geometric abstract machine hd (Γ)= { 2 n ← q [ a , − ] } ( 1 ) ( 2 n ) f �→ { 1 ← ⋆ } Γ �→ Γ { 2 n ← a } hd (Γ)= { 2 n − 1 ← q } , φ ( q )=[ a , κ ] ( 2 n ) Γ �→ Γ { 2 n ← q [ a , κ ] } hd (Γ)= { 2 n ← q [ a , ι ] } , π ( pop ι ( q ))= 2 k − 1 , Γ • 2 k − 1 = r ( 2 n ) b Γ �→ Γ { 2 n ← r a } hd (Γ)= { 2 n ← q } , ψ ( q )=[ a , κ ] ( 2 n + 1 ) Γ �→ Γ { 2 n + 1 ← q [ a , κ ] } hd (Γ)= { 2 n + 1 ← q [ a , ι ] } , π ( pop ι ( q ))= 2 k , Γ • 2 k = r ( 2 n + 1 ) Γ �→ Γ { 2 n ← r a }

  13. � � � � � � � � � Abstract machines GAM at work: outline . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  14. � � � � � � � � � Abstract machines GAM at work: step 1 . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  15. � � � � � � � � � Abstract machines GAM at work: step 2 . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  16. � � � � � � � � � Abstract machines GAM at work: step 2 . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 � � 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  17. � � � � � � � � � � Abstract machines GAM at work: step 3 . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  18. � � � � � � � � � � � Abstract machines GAM at work: step 3 . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  19. � � � � � � � � � � Abstract machines GAM at work: step 4 . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  20. � � � � � � � � � Abstract machines GAM at work: step 4 . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 � � 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  21. � � � � � � � � � � Abstract machines GAM at work: step 5 . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  22. � � � � � � � � � � Abstract machines GAM at work: step 5 . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 � �������������� 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  23. � � � � � � � � � � Abstract machines GAM at work: step 6 . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  24. � � � � � � � � � Abstract machines GAM at work: step 6 . . . 1 * ���� ���� 2 *[a1,-] . a 2 . . 2 a1 3 a1[a2,0] ���� ���� a 3 a 3 3 *[a1,-]a2 4 *[a1,-]a2[a3,0] 1 0 � ���� ���� 4 a1[a2,0]a3 a 2 a 2 5 a1[a2,0]a3[a2,1] 0 � 5 *[a1,-]a2 ���� ���� a 1 a 1 6 *[a1,-]a2[a3,0] 6 a1[a2,0]a3[a2,1] · · · ⋆

  25. Argumentation Summary of content Example dialogue about burden of proof Synthesised dialogue and formalisation

Recommend


More recommend