a truly universal ordinary differential equation
play

A truly universal ordinary differential equation Amaury Pouly 1 Joint - PowerPoint PPT Presentation

A truly universal ordinary differential equation Amaury Pouly 1 Joint work with Olivier Bournez 2 1 Max Planck Institute for Software Systems, Germany 2 LIX, cole Polytechnique, France 11 May 2018 1 / 20 Universal differential algebraic


  1. A truly universal ordinary differential equation Amaury Pouly 1 Joint work with Olivier Bournez 2 1 Max Planck Institute for Software Systems, Germany 2 LIX, École Polytechnique, France 11 May 2018 1 / 20

  2. Universal differential algebraic equation (Rubel) y 1 ( x ) x Theorem (Rubel, 1981) For any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists a solution y : R → R to ′′′′ + 6 y ′ 3 y ′′′′ + 24 y ′ 2 y ′′′′ 2 ′′′ 2 y ′′ 2 y ′′ 4 y 3 y ′ 4 y − 4 y ′ 4 y ′′ y ′′′ y ′′′′ ′′′ 3 − 29 y ′ 2 y ′′ 3 y ′′′ 2 + 12 y ′′ 7 − 12 y ′ 3 y = 0 ′′ y such that ∀ t ∈ R , | y ( t ) − f ( t ) | � ε ( t ) . 2 / 20

  3. Universal differential algebraic equation (Rubel) y 1 ( x ) x Theorem (Rubel, 1981) There exists a fixed k and nontrivial polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists a solution y : R → R to p ( y , y ′ , . . . , y ( k ) ) = 0 such that ∀ t ∈ R , | y ( t ) − f ( t ) | � ε ( t ) . 2 / 20

  4. Universal differential algebraic equation (Rubel) Open Problem Can we have unicity of y 1 ( x ) x the solution with initial conditions? Theorem (Rubel, 1981) There exists a fixed k and nontrivial polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists a solution y : R → R to p ( y , y ′ , . . . , y ( k ) ) = 0 such that ∀ t ∈ R , | y ( t ) − f ( t ) | � ε ( t ) . 2 / 20

  5. Rubel’s ("disappointing") proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise. Take f ( t ) = e ( 1 − t 2 ) 2 f It satisfies ′ ( t ) + 2 tf ( t ) = 0 . t 3 / 20

  6. Rubel’s ("disappointing") proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise. Take f ( t ) = e ( 1 − t 2 ) 2 f It satisfies ′ ( t ) + 2 tf ( t ) = 0 . For any a , b , c ∈ R , y ( t ) = cf ( at + b ) satisfies 3 y ′ 4 y ′′ y ′′′′ 2 − 4 y ′ 4 y ′′ 2 y ′′′′ + 6 y ′ 3 y ′′ 2 y ′′′ y ′′′′ + 24 y ′ 2 y ′′ 4 y ′′′′ − 12 y ′ 3 y ′′ y ′′′ 3 − 29 y ′ 2 y ′′ 3 y ′′′ 2 + 12 y ′′ 7 = 0 t 3 / 20

  7. Rubel’s ("disappointing") proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise. Take f ( t ) = e ( 1 − t 2 ) 2 f It satisfies ′ ( t ) + 2 tf ( t ) = 0 . For any a , b , c ∈ R , y ( t ) = cf ( at + b ) satisfies 3 y ′ 4 y ′′ y ′′′′ 2 − 4 y ′ 4 y ′′ 2 y ′′′′ + 6 y ′ 3 y ′′ 2 y ′′′ y ′′′′ + 24 y ′ 2 y ′′ 4 y ′′′′− 12 y ′ 3 y ′′ y ′′′ 3 − 29 y ′ 2 y ′′ 3 y ′′′ 2 + 12 y ′′ 7 = 0 Can glue together arbitrary many such pieces � crucial (and tricky) part of the proof t 3 / 20

  8. Rubel’s ("disappointing") proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise. Take f ( t ) = e ( 1 − t 2 ) 2 f It satisfies ′ ( t ) + 2 tf ( t ) = 0 . For any a , b , c ∈ R , y ( t ) = cf ( at + b ) satisfies 3 y ′ 4 y ′′ y ′′′′ 2 − 4 y ′ 4 y ′′ 2 y ′′′′ + 6 y ′ 3 y ′′ 2 y ′′′ y ′′′′ + 24 y ′ 2 y ′′ 4 y ′′′′− 12 y ′ 3 y ′′ y ′′′ 3 − 29 y ′ 2 y ′′ 3 y ′′′ 2 + 12 y ′′ 7 = 0 Can glue together arbitrary many such pieces � crucial (and tricky) part of the proof Can arrange so that f is solution : piecewise pseudo-linear � t 3 / 20

  9. Rubel’s ("disappointing") proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise. Take f ( t ) = e ( 1 − t 2 ) 2 f It satisfies ′ ( t ) + 2 tf ( t ) = 0 . For any a , b , c ∈ R , y ( t ) = cf ( at + b ) satisfies 3 y ′ 4 y ′′ y ′′′′ 2 − 4 y ′ 4 y ′′ 2 y ′′′′ + 6 y ′ 3 y ′′ 2 y ′′′ y ′′′′ + 24 y ′ 2 y ′′ 4 y ′′′′− 12 y ′ 3 y ′′ y ′′′ 3 − 29 y ′ 2 y ′′ 3 y ′′′ 2 + 12 y ′′ 7 = 0 Can glue together arbitrary many such pieces � crucial (and tricky) part of the proof Can arrange so that f is solution : piecewise pseudo-linear � t Conclusion : Rubel’s equation allows any piecewise pseudo-linear functions, and those are dense in C 0 3 / 20

  10. The problem with Rubel’s DAE The solution y is not unique, even with added initial conditions : p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( 0 ) = α 0 , y ′ ( 0 ) = α 1 , . . . , y ( k ) ( 0 ) = α k In fact, this is fundamental for Rubel’s proof to work! 4 / 20

  11. The problem with Rubel’s DAE The solution y is not unique, even with added initial conditions : p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( 0 ) = α 0 , y ′ ( 0 ) = α 1 , . . . , y ( k ) ( 0 ) = α k In fact, this is fundamental for Rubel’s proof to work! Rubel’s statement : this DAE is universal More realistic interpretation : this DAE allows almost anything Open Problem (Rubel, 1981) Is there a universal ODE y ′ = p ( y ) ? Note : explicit polynomial ODE ⇒ unique solution 4 / 20

  12. Universal explicit ordinary differential equation y 1 ( x ) x Main result There exists a fixed (vector of) polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists α ∈ R d such that y ( 0 ) = α, y ′ ( t ) = p ( y ( t )) has a unique solution y : R → R d and ∀ t ∈ R , | y 1 ( t ) − f ( t ) | � ε ( t ) . 5 / 20

  13. Universal explicit ordinary differential equation Notes : system of ODEs, y 1 ( x ) x y must be analytic, we need d ≈ 300. Main result There exists a fixed (vector of) polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists α ∈ R d such that y ( 0 ) = α, y ′ ( t ) = p ( y ( t )) has a unique solution y : R → R d and ∀ t ∈ R , | y 1 ( t ) − f ( t ) | � ε ( t ) . 5 / 20

  14. Universal explicit ordinary differential equation Notes : system of ODEs, y 1 ( x ) x y must be analytic, we need d ≈ 300. Main result There exists a fixed (vector of) polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists α ∈ R d such that y ( 0 ) = α, y ′ ( t ) = p ( y ( t )) has a unique solution y : R → R d and ∀ t ∈ R , | y 1 ( t ) − f ( t ) | � ε ( t ) . Futhermore, α is computable † from f and ε . † . This statement can be made precise with the theory of Computable Analysis. 5 / 20

  15. Universal DAE, again but better y 1 ( x ) x Corollary of main result There exists a fixed k and nontrivial polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists α 0 , . . . , α k ∈ R such that p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( 0 ) = α 0 , y ′ ( 0 ) = α 1 , . . . , y ( k ) ( 0 ) = α k has a unique analytic solution y : R → R and ∀ t ∈ R , | y ( t ) − f ( t ) | � ε ( t ) . 6 / 20

  16. Some motivation Polynomial ODEs correspond to analog computers : Differential Analyser British Navy mecanical computer 7 / 20

  17. Some motivation Polynomial ODEs correspond to analog computers : Differential Analyser British Navy mecanical computer They are equivalent to Turing machines! One can characterize P with pODEs (ICALP 2016) Take away : polynomial ODEs are a natural programming language. 7 / 20

  18. Example of differential equation y 2 � � y 1 × ℓ y 3 y 4 − g � × ℓ θ m � × × − 1 General Purpose Analog Computer (GPAC) Shannon’s model of the Differential Analyser θ + g ¨ ℓ sin( θ ) = 0  y ′  1 = y 2 y 1 = θ   2 = − g y 2 = ˙  y ′  ℓ y 3 θ   ⇔ y ′ 3 = y 2 y 4 y 3 = sin( θ )     y ′ 4 = − y 2 y 3 y 4 = cos( θ )   8 / 20

  19. A brief stop Before I can explain the proof, you need to know more of polynomial ODEs and what I mean by programming with ODEs. 9 / 20

  20. Generable functions (total, univariate) Types Definition f : R → R is generable if there exists d , p d ∈ N : dimension and y 0 such that the solution y to Q ⊆ K ⊆ R : field p ∈ K d [ R n ] : polynomial y ( 0 ) = y 0 , y ′ ( x ) = p ( y ( x )) vector (coef. in K ) satisfies f ( x ) = y 1 ( x ) for all x ∈ R . y 0 ∈ K d , y : R → R d y 1 ( x ) x Note : existence and unicity of y by Cauchy-Lipschitz theorem. 10 / 20

  21. Generable functions (total, univariate) Types Definition f : R → R is generable if there exists d , p d ∈ N : dimension and y 0 such that the solution y to Q ⊆ K ⊆ R : field p ∈ K d [ R n ] : polynomial y ( 0 ) = y 0 , y ′ ( x ) = p ( y ( x )) vector (coef. in K ) satisfies f ( x ) = y 1 ( x ) for all x ∈ R . y 0 ∈ K d , y : R → R d Example : f ( x ) = x ◮ identity y ′ = 1 y ( 0 ) = 0 , y ( x ) = x � 10 / 20

  22. Generable functions (total, univariate) Types Definition f : R → R is generable if there exists d , p d ∈ N : dimension and y 0 such that the solution y to Q ⊆ K ⊆ R : field p ∈ K d [ R n ] : polynomial y ( 0 ) = y 0 , y ′ ( x ) = p ( y ( x )) vector (coef. in K ) satisfies f ( x ) = y 1 ( x ) for all x ∈ R . y 0 ∈ K d , y : R → R d Example : f ( x ) = x 2 ◮ squaring y 1 ( x )= x 2 y 1 ( 0 )= 0 , y ′ 1 = 2 y 2 � y 2 ( 0 )= 0 , 2 = 1 y ′ y 2 ( x )= x � 10 / 20

Recommend


More recommend