NSMAT2016 Sendai , Nov. 21 A new condensed kaonic-proton matter (KPM) composed of Λ * K - p multiplets ≡ and its astrophysical connections Y oshinori AKAISHI and T oshimitsu YAMAZAKI
" Λ (1405) ansatz" Dote et al. U U U nucl nucl nucl K - + pp K - + p K - + 3 He K K K MeV MeV MeV 3 r fm 3 r fm 3 r fm 1 2 1 2 1 2 0 0 0 Λ (1405) 2 -50 -50 -50 H K Σ + π E Σ + π Σ + π K = -27 MeV E K = -48 MeV = Γ 4 0 MeV 3 H = Γ 61 MeV K E K = -108 MeV Λ + π Λ + π Λ + π = Γ 2 0 MeV -200 -200 -200 Shrinkage! -300 -300 -300 New prospects N.V. Shevchenko, A. Gal & J. Mares , Phys. Rev. Lett. 98 (2007) 082301 1. Deeply bound E = -55~-70 MeV, Γ = 90~110 MeV -400 -400 -400 2. Dense and cold Y. Ikeda & T. Sato , Phys. Rev. C 76 (2007) 035203 E = -80 MeV, Γ = 73 MeV 3. Boson (su bar ) as A. Dote, T. Hyodo & W. Weise , Phys. Rev. C 79 (2009) 014003 constituent E = -20 +- 3 MeV, Γ = 40~70 MeV of “matter” -500 -500 -500 The most relevant issue is : M ( Λ * ) = 1405 or 1420 ? Y. Akaishi & T. Yamazaki, Phys. Rev. C 65 (2002) 044005 T. Yamazaki & Y. Akaishi, Phys. Lett. B 535 (2002) 70 Chiral
2016 2015 Our analyses M. Hassanvand et al., Phys. Rev. C 87 (2013) 055202 (GSI, Germany) HADES data G. Agakishiev et al., Phys. Rev. C 87 (2013) 025201
(J-LAB, USA) Double poles from CLAS data K. Moriya et al., + ± M. Mai & U-G. Meissner , γ + → + + m 0 0 Σ π Phys. Rev. C 87 p K Eur. Phys. J. A 51 (2015) 30 (2013) 035206 W = 2.0 ~2.8 GeV χ 2 p.p. = 1.77
Pole structure of the Λ (1405) region U.-G. Meissner & T. Hyodo M-M etc. + SHIDDHARTA (K - d atom) Λ * Extrapolated to bound region NLO chiral amplitudes 8 sets The CLAS data “Outer” “Inner” parameters parameter never participated M-M ~19 x 9 in determining 0 the pole positions. What is the pole position of Λ (1405) extracted from the CLAS data? just in the bound region Fundamental amplitudes, 1 ; K N I =0 T 21 ( Y ) and T 22 ( Y ) Σπ 2 ; 2 parameters ( M , Γ ) HAY + 3 outer parameters M-M fixed + 19
Confidence level map from the Σ 0 π 0 CLAS data Our M ( Λ *)=1405 ansatz is robust. By M. Hassanvand PDG Chiral #4
K - pp quasi-bound state 200 NN 100 int. K - −( pp ) K - p p 0 BE (pp) < 2 MeV 1.90 fm -78 -100 rms distance -200 BE (K - p) = 27 MeV -300 K - p int. ( K - p )− p -400 -500 Λ *-p structure -600 [MeV] Λ * = (K - p) I =0 unit
E27@J-PARC K - pp Y. Ichikawa et al., Prog. Theor. Exp. Phys. 2015, 021D01 Deeply bound! more than Theor. Yamazaki-Akaishi E K = -48 MeV = Γ 61 MeV 17% enhanced K bar N interaction S. Maeda et al., E K = Proc. Jpn. Acad. B 89 -103 MeV (2013) 418 = Γ 118 MeV p + p � K + + X 2.85 GeV DISTO (SATURNE, France) T. Yamazaki et al., Phys. Rev. Lett. 104 (2010) 132502
Summary talk at Meson2015 (Krakow) A. Gal, arXiv:1609.04570v1 [nucl-th] Shallow : B K Deep : B K ≈ pp (E15) 15 MeV pp (E27) 95 MeV ≈ - - or 1) B K ≈ pp (Chiral) 20 MeV - ≈ 2) E27 : Shift of QF Y* 22 MeV Y* Misunderstanding of QF Y*, that is a sum of several L peaks. Shallow !
Angular-mom. decomposition of the Λ *-p pair Effect of DISTO Λ *-p interaction QF Λ * No Λ *p int. L ≤ 8 QF L = 1 L = 2 L = 0 QF L = 2 QF L =1 QF L = 0 2150 2200 2250 2300 2350 2400 2450 2500 MM [MeV/ c 2 ]
Exclusive spectrum of E15 K - pp (DISTO) Λ * +p (PDG) K - +p+p M. Iwasaki, MIN-2016 Deeper than chiral one. T. Sekihara, E. Oset and A. Ramos arXiv:1607.02058v1 [hep-ph], and PTEP 2013 BE (K - pp) = 16 MeV, Γ (K - pp) = 72 MeV Option A L =1 Λ *-p DISTO K - pp L =0 Λ *-p
Λ * Λ * model for K - K - pp r r r r r r ( ) { } r , r N ( r ) ( r ) ( r ) ( r ) Φ = φ φ ± φ φ 1 2 a 1 b 2 b 1 a 2 T F 300 Λ * Λ * T [MeV] 200 100 K - K - V KK D 1 2 3 [fm] 0 p p -5.0 -3.0 -1.0 1.0 3.0 5.0 2 E ( Λ *) D E F -100 If K - is assumed to be a fermion: Fermion covalent bonds -200 E cancel each other. -300 U F { } -400 2 K ( ) ( ) ( ) ( ) ( ) U D U D U K ≡ − ∞ * * V Λ U V V Λ mig ⇒ = ρ ⊗ + + ⊗ ρ mig pp * * p pp pp KK p Λ Λ U -500 Boson covalent bonds are always added ! -600 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Possible existence of “few-body strangelet” K - + p [MeV/ c 2 ] 4Λ * in 1432 mean field 1405 Λ * at most ~200 MeV Λ * N ~4 covalent bonds 316 MeV 289 MeV Gazda et al.’s limitation ( Λ *) 4 “K - ”+p multiplet Λ * Σ 0 “ Λ *” in ( Λ *) 4 1193 Λ 12 covalent bonds 1116 At least ~300 MeV binding “ Λ *” in ( Λ *) 6 is necessitated for quasi-stable Λ * Λ * multiplets “Strangelet” n 940 938 p
Λ * effective mass in Λ * strangelet K - K - pp = Λ * Λ * = H* Λ * quartet Λ * sextet Λ * octet Λ * doublet H* doublet H* triplet H* quartet H* singlet Λ ∗ 1405 MeV 1349 MeV AY K bar N int. 1326 MeV DISTO K bar N int. 1330 MeV 1269 MeV 1216 MeV 1216 MeV 1209 MeV Λ 1116 MeV 1068 MeV Quasi-stable n 940 MeV 911 MeV Stable
Kaonic-proton matter Anti-quarks Quarks QGP u d s u d s ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Disappearing s u ⋅ uud s ⋅ u u u d Relic uud Residue udd u u d ~10 -8 QGB Anti-matter Matter s u uud ⋅ Anti-quark survives as KPM. Hybrid
K bar N structure of Λ (1405) from lattice QCD calculation J. Hall, , A.W. Thomas et al ., Phys. Rev. Lett. 114 (2015) 132002 su bar -uud sud What is Λ *-p interaction, SSNF?
Remark Super-strong Λ *- Λ * force due to K bar migration predicts the possible existence of Λ * multiplets / Kaonic Proton Matter, which could be stable against any known decay modes. K - Y. Akaishi and T. Yamazaki arXiv:1610.01249v1 [nucl-th] Λ * p
Thank you very much!
The late Prof. Nishijima Gateway to "Swan Nuclear Physics" T. Yamazaki, Y. Akaishi & M. Hassanvand, Proc. Jpn. Acad. B 87 (2011) 362 K + ~3 GeV p Λ * K - pp p K + DISTO Several GeV Short collision length Compact bound state p Λ * K - K - pp p ~7 GeV Λ * K +
Production cross section of K - K - pp M. Hassanvand, Y. Akaishi & T. Yamazaki, Phys. Rev. C 84 (2011) 015207 1.5 E [MeV] BOUND STATE -200- i 75 + [arb. units] -150- i 75 1.2 -100- i 75 CUSP -50- i 75 0.9 + K 2 σ / d E d θ K 0.6 QUASI-FREE 0.3 3 n 5 − ( M M ) d ∝ − 2 max 2 M Λ * 0.0 2400 2500 2600 2700 2800 2900 3000 M (K - K - pp) [MeV/ c 2 ] "Hard formation process" different from Coalescence model and statistical model (S. Cho et al., Phys. Rev. Lett. 106 (2011) 212001)
Recommend
More recommend