A Maximum A-Posteriori Based Algorithm for Dynamic Load Model Parameter Estimation Siming Guo and Prof. Thomas Overbye sguo6@illinois.edu September 21, 2015
Measurement based parameter estimation 1.05 1 Voltage [pu] 0.95 0.9 0.85 0 0.2 0.4 0.6 0.8 Time [s] 2 argmin π€ ππππ‘ β π€ π 2 Compare π Load model Load model Load model Simulation Simulation Simulation p p p v p v p v p 1.05 non-injective 1 Simulation Voltage [pu] Ideal 0.95 Load model 0.9 PowerWorld 0.85 0 0.2 0.4 0.6 0.8 Time [s] Simulation Simulation Simulation process process process Source: http://www.tva.gov/power/rightofway/images/high_cost_tree.jpg, http://home.iitk.ac.in/~ankushar/rtds/images/sel451.jpg, http://www.ee.washington.edu/research/pstca/pf30/pg_tca30fig.htm 2 / 11
Test case π = %ππ %ππ %πΈπ %π·π %ππ½/π π Source: PSS/E 33.5 Model Library 3 / 11
Impact of measurement noise 2 is insensitive to parameters π€ ππππ‘ β π€ π Parameter estimate is very sensitive to noise 2 George E. P. Box: βEssentially , all models are wrong, but some are usefulβ 4 / 11
Prediction accuracy 5 / 11
Solution 1: Use multiple disturbances Simulation 1 Load model Simulation 2 v p v p p Simulation Simulation process process 2 + π€ ππππ‘,πππ£ππ’ 2 β π€ π,πππ£ππ’ 2 2 2 argmin π€ ππππ‘,πππ£ππ’ 1 β π€ π,πππ£ππ’ 1 2 π 6 / 11
Solution 1: Results 7 / 11
Solution 2: Maximum a-posteriori (MAP) estimator Simulation Simulation Load model Load model argmax Pr{π|π€ ππππ‘ } v p v p p p π Pr π€ ππππ‘ π β Pr{π} = argmax Pr{π€ ππππ‘ } π = argmax Pr π€ ππππ‘ π β Pr{π} Simulation Simulation π process process π π π π (π€ ππππ‘ π’ β π€ π π’ ) π π (π π β π π π ) π’=1 π=1 π π π π π€ ππππ‘ π’ π€ π π’ π π π π π 8 / 11
Solution 2: Implementation issue 1 π π β π π (π€ ππππ‘ π’ β π€ π π’ ) π’=1 1 π π 2π exp β π€ ππππ‘ π’ β π€ π π’ 1 One problem: Because: argmax Pr π€ ππππ‘ π β Pr{π} = π π β’ π π 1π = 0.17 π’=1 1 β’ 30 seconds @ 30 samples/s π π = 1 β π€ ππππ‘ π’ β π€ π π’ ο π = 900 π 2π exp π 0.17 900 ~10 β693 π π (π€ ππππ‘ π’ β π€ π π’ ) β’ π’=1 π π’=1 β’ Smallest double precision β π€ ππππ‘ π’ β π€ π π’ = 1 1 π 2π exp π number ~10 β308 π π π’=1 ~1 9 / 11
Solution 2: Results Prior π Data π π dominates π dominates 10 / 11
Summary Injectivity in load modeling Problem: Lack of injectivity leads to bad objective functionβ¦ β¦which leads to poor predictions Solution: MAP estimator 0.17 900 ~10 β693 Implementation issues 11 / 11
Recommend
More recommend