a maximum a posteriori based algorithm for dynamic load
play

A Maximum A-Posteriori Based Algorithm for Dynamic Load Model - PowerPoint PPT Presentation

A Maximum A-Posteriori Based Algorithm for Dynamic Load Model Parameter Estimation Siming Guo and Prof. Thomas Overbye sguo6@illinois.edu September 21, 2015 Measurement based parameter estimation 1.05 1 Voltage [pu] 0.95 0.9 0.85 0 0.2


  1. A Maximum A-Posteriori Based Algorithm for Dynamic Load Model Parameter Estimation Siming Guo and Prof. Thomas Overbye sguo6@illinois.edu September 21, 2015

  2. Measurement based parameter estimation 1.05 1 Voltage [pu] 0.95 0.9 0.85 0 0.2 0.4 0.6 0.8 Time [s] 2 argmin 𝑀 𝑛𝑓𝑏𝑑 βˆ’ 𝑀 π‘ž 2 Compare π‘ž Load model Load model Load model Simulation Simulation Simulation p p p v p v p v p 1.05 non-injective 1 Simulation Voltage [pu] Ideal 0.95 Load model 0.9 PowerWorld 0.85 0 0.2 0.4 0.6 0.8 Time [s] Simulation Simulation Simulation process process process Source: http://www.tva.gov/power/rightofway/images/high_cost_tree.jpg, http://home.iitk.ac.in/~ankushar/rtds/images/sel451.jpg, http://www.ee.washington.edu/research/pstca/pf30/pg_tca30fig.htm 2 / 11

  3. Test case π‘ž = %𝑀𝑁 %𝑇𝑁 %𝐸𝑀 %𝐷𝑄 %𝑄𝐽/π‘…π‘Ž Source: PSS/E 33.5 Model Library 3 / 11

  4. Impact of measurement noise 2 is insensitive to parameters 𝑀 𝑛𝑓𝑏𝑑 βˆ’ 𝑀 π‘ž Parameter estimate is very sensitive to noise 2 George E. P. Box: β€œEssentially , all models are wrong, but some are useful” 4 / 11

  5. Prediction accuracy 5 / 11

  6. Solution 1: Use multiple disturbances Simulation 1 Load model Simulation 2 v p v p p Simulation Simulation process process 2 + 𝑀 𝑛𝑓𝑏𝑑,π‘”π‘π‘£π‘šπ‘’ 2 βˆ’ 𝑀 π‘ž,π‘”π‘π‘£π‘šπ‘’ 2 2 2 argmin 𝑀 𝑛𝑓𝑏𝑑,π‘”π‘π‘£π‘šπ‘’ 1 βˆ’ 𝑀 π‘ž,π‘”π‘π‘£π‘šπ‘’ 1 2 π‘ž 6 / 11

  7. Solution 1: Results 7 / 11

  8. Solution 2: Maximum a-posteriori (MAP) estimator Simulation Simulation Load model Load model argmax Pr{π‘ž|𝑀 𝑛𝑓𝑏𝑑 } v p v p p p π‘ž Pr 𝑀 𝑛𝑓𝑏𝑑 π‘ž βˆ™ Pr{π‘ž} = argmax Pr{𝑀 𝑛𝑓𝑏𝑑 } π‘ž = argmax Pr 𝑀 𝑛𝑓𝑏𝑑 π‘ž βˆ™ Pr{π‘ž} Simulation Simulation π‘ž process process π‘ˆ 𝑂 𝑔 π‘Š (𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 ) 𝑔 𝑄 (π‘ž π‘œ βˆ’ 𝜈 π‘ž π‘œ ) 𝑒=1 π‘œ=1 𝑔 𝑔 π‘Š 𝑄 𝑀 𝑛𝑓𝑏𝑑 𝑒 𝑀 π‘ž 𝑒 𝜈 π‘ž π‘œ π‘ž π‘œ 8 / 11

  9. Solution 2: Implementation issue 1 π‘ˆ π‘ˆ β‰… 𝑔 π‘Š (𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 ) 𝑒=1 1 π‘ˆ π‘ˆ 2𝑐 exp βˆ’ 𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 1 One problem: Because: argmax Pr 𝑀 𝑛𝑓𝑏𝑑 π‘ž βˆ™ Pr{π‘ž} = 𝑐 π‘ž β€’ 𝑔 π‘Š 1𝜏 = 0.17 𝑒=1 1 β€’ 30 seconds @ 30 samples/s π‘ˆ π‘ˆ = 1 βˆ’ 𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 οƒ  π‘ˆ = 900 π‘ˆ 2𝑐 exp 𝑐 0.17 900 ~10 βˆ’693 𝑔 π‘Š (𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 ) β€’ 𝑒=1 π‘ˆ 𝑒=1 β€’ Smallest double precision βˆ’ 𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 = 1 1 𝑔 2𝑐 exp π‘ˆ number ~10 βˆ’308 π‘Š 𝑐 𝑒=1 ~1 9 / 11

  10. Solution 2: Results Prior 𝑔 Data 𝑔 𝑄 dominates π‘Š dominates 10 / 11

  11. Summary Injectivity in load modeling Problem: Lack of injectivity leads to bad objective function… …which leads to poor predictions Solution: MAP estimator 0.17 900 ~10 βˆ’693 Implementation issues 11 / 11

Recommend


More recommend