a general approach for synthesis of supervisors for
play

A General Approach for Synthesis of Supervisors for - PowerPoint PPT Presentation

A General Approach for Synthesis of Supervisors for Partially-Observed Discrete-Event Systems Xiang Yin and Stphane Lafortune EECS Department, University of Michigan 19th IFAC WC, August 24-29, 2014, Cape Town, South Africa 1/18 X.Yin &


  1. A General Approach for Synthesis of Supervisors for Partially-Observed Discrete-Event Systems Xiang Yin and StΓ©phane Lafortune EECS Department, University of Michigan 19th IFAC WC, August 24-29, 2014, Cape Town, South Africa 1/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  2. Introduction β€’ Supervisory control under partial observation 2 3 0 4 𝑑 1 5 Plant G 𝑄 𝑇(𝑑) βˆ— β†’ Ξ“ 𝑄(𝑑) 𝑇: 𝐹 𝑝 Supervisor 𝐹 = 𝐹 𝑑 βˆͺ 𝐹 𝑣𝑑 = 𝐹 𝑝 βˆͺ 𝐹 𝑣𝑝 β€’ β†’ Ξ“ , where Ξ“ ≔ {𝛿 ∈ 2 𝐹 : 𝐹 𝑣𝑑 βŠ† 𝛿} Supervisor 𝑇: 𝑄 β„’ 𝐻 β€’ 2/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  3. System Model 𝐻 = (π‘Œ, 𝐹, 𝑔, 𝑦 0 ) is a deterministic FSA π‘Œ is the finite set of states; β€’ 𝐹 is the finite set of events; β€’ 𝑔: π‘Œ Γ— 𝐹 β†’ π‘Œ is the partial transition function; β€’ 𝑦 0 is the initial state. β€’ 3/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  4. System Model 𝐻 = (π‘Œ, 𝐹, 𝑔, 𝑦 0 ) is a deterministic FSA π‘Œ is the finite set of states; β€’ 𝐹 is the finite set of events; β€’ 𝑔: π‘Œ Γ— 𝐹 β†’ π‘Œ is the partial transition function; β€’ 𝑦 0 is the initial state. β€’ Specification automaton 𝐼 : 𝐿 = β„’ 𝐼 βŠ† β„’ (𝐻) β€’ β€’ Assumption : illegality is captured by states (w.l.o.g.) π‘Œ 𝐼 βŠ† π‘Œ is the set of legal states 3/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  5. Problem Formulation β€’ Existence Condition: (Controllability and Observability Theorem) There exists a supervisor such that β„’ (𝑇/𝐻) = 𝐿 if and only if 𝐿 is controllable and observable. 4/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  6. Problem Formulation β€’ Existence Condition: (Controllability and Observability Theorem) There exists a supervisor such that β„’ (𝑇/𝐻) = 𝐿 if and only if 𝐿 is controllable and observable. β€’ Synthesis Problem: (BSCOP 𝑛𝑏𝑦 ) βˆ— β†’ Ξ“ such that Given a plant 𝐻 and specification 𝐼 . Find a supervisor 𝑇: 𝐹 𝑝 1). β„’ (𝑇/𝐻) βŠ† β„’ 𝐼 ; (Safety) 2). β„’(𝑇/𝐻) βŠ„ β„’(𝑇 β€² /𝐻) , βˆ€ safe 𝑇 β€² . (Maximal Permissiveness) 4/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  7. Literature Survey β€’ F. Lin, and W. M. Wonham. "On observability of discrete-event systems." Information sciences 44.3 (1988): 173-198. β€’ R. Cieslak, et al. "Supervisory control of discrete-event processes with partial observations." IEEE Transactions on Automatic Control, 33.3 (1988): 249-260. (Initial works; Supremal normal solution) 5/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  8. Literature Survey β€’ F. Lin, and W. M. Wonham. "On observability of discrete-event systems." Information sciences 44.3 (1988): 173-198. β€’ R. Cieslak, et al. "Supervisory control of discrete-event processes with partial observations." IEEE Transactions on Automatic Control, 33.3 (1988): 249-260. (Initial works; Supremal normal solution) S. Takai, and T. Ushio. "Effective computation of an β„’ 𝑛 (𝐻) -closed, controllable, β€’ and observable sublanguage arising in supervisory control." Systems & Control Letters 49.3 (2003): 191-200. β€’ K. Cai, R. Zhang, and W. M. Wonham. "Relative observability of discrete-event Systems and its supremal sublanguages." IEEE Transactions on Automatic Control, (2014). (Solutions larger than supremal normal) 5/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  9. Literature Survey β€’ Heymann, Michael, and Feng Lin. "On-line control of partially observed discrete event systems." Discrete Event Dynamic Systems 4.3 (1994): 221-236. β€’ Hadj-Alouane, Nejib Ben, StΓ©phane Lafortune, and Feng Lin. "Centralized and distributed algorithms for on-line synthesis of maximal control policies under partial observation." Discrete Event Dynamic Systems 6.4 (1996): 379-427. (Online control; Only for safety specification; A certain class of maximal policies) 6/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  10. Literature Survey β€’ Heymann, Michael, and Feng Lin. "On-line control of partially observed discrete event systems." Discrete Event Dynamic Systems 4.3 (1994): 221-236. β€’ Hadj-Alouane, Nejib Ben, StΓ©phane Lafortune, and Feng Lin. "Centralized and distributed algorithms for on-line synthesis of maximal control policies under partial observation." Discrete Event Dynamic Systems 6.4 (1996): 379-427. (Online control; Only for safety specification; A certain class of maximal policies) β€’ K. Inan , β€œNondeterministic supervision under partial observations,” in 11th International Conference on Analysis and Optimization of Systems: Discrete Event Systems. Springer, (1994): 39 – 48. (Decidability for safe and non-blocking; No synthesis) β€’ T.-S. Yoo, and S. Lafortune. "Solvability of centralized supervisory control under partial observation." Discrete Event Dynamic Systems 16.4 (2006): 527-553. (Solvability for safe and non-blocking; No maximality) 6/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  11. The Need for a New Approach Why we need a new approach?  Observability is not preserved under union  algebraic approach cannot obtain a maximal solution  synthesis of maximally-permissive safe and non-blocking supervisor is open  Solution space may be infinite  how to solve optimal control problem? 7/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  12. Bipartite Transition System: A New Approach What is our new approach?  Bipartite transition system  A game structure between the controller and the system  Enumerates all (infinite) legal solutions using a finite structure  A state-based approach for synthesis  Inspired by methodologies in reactive synthesis literature 8/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  13. Bipartite Transition System Information State: a set of states, 𝐽 ≔ 2 π‘Œ 9/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  14. Bipartite Transition System Information State: a set of states, 𝐽 ≔ 2 π‘Œ Definition. (BTS). A bipartite transition system T w.r.t. G is a 7-tuple π‘ˆ = (𝑅 𝑍 , 𝑅 π‘Ž , β„Ž π‘π‘Ž , β„Ž π‘Žπ‘ , 𝐹, Ξ“, 𝑧 0 ) where β€’ 𝑅 𝑍 βŠ† 𝐽 is the set of Y-states; β€’ 𝑅 π‘Ž βŠ† 𝐽 Γ— Ξ“ is the set of Z-states so that z = (𝐽 𝑨 , Ξ“ 𝑨 ) ; β€’ β„Ž π‘π‘Ž : 𝑅 𝑍 Γ— Ξ“ β†’ Q π‘Ž represents the unobservable reach; π‘ˆ Γ— E β†’ Q 𝑍 represents the observation transition; β€’ β„Ž π‘Žπ‘ : 𝑅 π‘Ž β€’ E is the set of events of G ; β€’ Ξ“ is the set of admissible control decisions of G ; β€’ 𝑧 0 = {𝑦 0 } is the initial state. 9/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  15. Bipartite Transition System {0} 𝑐 1 𝑐 2 0 𝑝 1 𝑝 2 𝑝 2 𝑝 1 1 2 𝑝 1 𝑝 2 𝑝 2 𝑝 1 𝑑 1 𝑑 2 𝑑 1 𝑑 2 3 7 5 11 13 6 4 9 𝑑 2 𝑑 1 𝑑 2 𝑝 2 𝑑 1 𝑝 1 𝑝 2 𝑝 1 8 12 14 10 𝑑 2 𝑑 1 𝑑 1 𝑑 2 15 𝐹 𝑑 = {𝑑 1 , 𝑑 2 }, 𝐹 𝑝 = {𝑝 1 , 𝑝 2 } Illegal states = π‘Œ βˆ– π‘Œ 𝐼 = {15} 10/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  16. Bipartite Transition System {0} 𝑐 1 𝑐 2 { } 0 𝑝 1 𝑝 2 𝑝 2 𝑝 1 1 2 𝑝 1 𝑝 2 𝑝 2 𝑝 1 𝑑 1 𝑑 2 𝑑 1 𝑑 2 3 7 5 11 13 6 4 9 𝑑 2 𝑑 1 𝑑 2 𝑝 2 𝑑 1 𝑝 1 𝑝 2 𝑝 1 8 12 14 10 𝑑 2 𝑑 1 𝑑 1 𝑑 2 15 𝐹 𝑑 = {𝑑 1 , 𝑑 2 }, 𝐹 𝑝 = {𝑝 1 , 𝑝 2 } Illegal states = π‘Œ βˆ– π‘Œ 𝐼 = {15} 10/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  17. Bipartite Transition System {0} 𝑐 1 𝑐 2 { } 0 {0,1,2},{ } 𝑝 1 𝑝 2 𝑝 2 𝑝 1 1 2 𝑝 1 𝑝 2 𝑝 2 𝑝 1 𝑑 1 𝑑 2 𝑑 1 𝑑 2 3 7 5 11 13 6 4 9 𝑑 2 𝑑 1 𝑑 2 𝑝 2 𝑑 1 𝑝 1 𝑝 2 𝑝 1 8 12 14 10 𝑑 2 𝑑 1 𝑑 1 𝑑 2 15 𝐹 𝑑 = {𝑑 1 , 𝑑 2 }, 𝐹 𝑝 = {𝑝 1 , 𝑝 2 } Illegal states = π‘Œ βˆ– π‘Œ 𝐼 = {15} 10/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  18. Bipartite Transition System {0} 𝑐 1 𝑐 2 { } 0 𝑝 1 {0,1,2},{ } 𝑝 1 𝑝 2 𝑝 2 𝑝 1 1 2 𝑝 1 𝑝 2 𝑝 2 𝑝 1 𝑑 1 𝑑 2 𝑑 1 𝑑 2 3 7 5 11 13 6 4 9 𝑑 2 𝑑 1 𝑑 2 𝑝 2 𝑑 1 𝑝 1 𝑝 2 𝑝 1 8 12 14 10 𝑑 2 𝑑 1 𝑑 1 𝑑 2 15 𝐹 𝑑 = {𝑑 1 , 𝑑 2 }, 𝐹 𝑝 = {𝑝 1 , 𝑝 2 } Illegal states = π‘Œ βˆ– π‘Œ 𝐼 = {15} 10/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

  19. Bipartite Transition System {0} 𝑐 1 𝑐 2 { } 0 𝑝 1 {0,1,2},{ } {3,4} 𝑝 1 𝑝 2 𝑝 2 𝑝 1 1 2 𝑝 1 𝑝 2 𝑝 2 𝑝 1 𝑑 1 𝑑 2 𝑑 1 𝑑 2 3 7 5 11 13 6 4 9 𝑑 2 𝑑 1 𝑑 2 𝑝 2 𝑑 1 𝑝 1 𝑝 2 𝑝 1 8 12 14 10 𝑑 2 𝑑 1 𝑑 1 𝑑 2 15 𝐹 𝑑 = {𝑑 1 , 𝑑 2 }, 𝐹 𝑝 = {𝑝 1 , 𝑝 2 } Illegal states = π‘Œ βˆ– π‘Œ 𝐼 = {15} 10/18 X.Yin & S.Lafortune (UMich) IFAC World Congress 2014 August 25, 2014

Recommend


More recommend