a general approach for solving dynamic sensor
play

A General Approach for Solving Dynamic Sensor Activation Problems - PowerPoint PPT Presentation

A General Approach for Solving Dynamic Sensor Activation Problems for a Class of Properties Xiang Yin and Stphane Lafortune EECS Department, University of Michigan 54th IEEE CDC, Dec 15-18, 2015, Osaka, Japan 0/17 X.Yin & S.Lafortune


  1. A General Approach for Solving Dynamic Sensor Activation Problems for a Class of Properties Xiang Yin and StΓ©phane Lafortune EECS Department, University of Michigan 54th IEEE CDC, Dec 15-18, 2015, Osaka, Japan 0/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  2. Introduction β€’ Dynamic Sensor Activation Problem 2 3 0 4 𝑑 1 5 Plant G 𝑄 𝑄(𝑑) Observer 1/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  3. Introduction β€’ Dynamic Sensor Activation Problem 2 3 0 4 𝑑 1 5 Sensor Activation Plant G Module 𝝏 𝑄 𝑄 πœ• (𝑑) Observer 1/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  4. Introduction β€’ Dynamic Sensor Activation Problem 2 3 0 4 𝑑 1 5 Sensor Activation Plant G Module 𝝏 𝑄 𝑄 πœ• (𝑑) Property √ Observer 1/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  5. System Model 𝐻 = (𝑅, Ξ£, πœ€, π‘Ÿ 0 ) is a deterministic FSA β€’ 𝑅 is the finite set of states; β€’ Ξ£ is the finite set of events; β€’ πœ€: 𝑅 Γ— Ξ£ β†’ 𝑅 is the partial transition function; β€’ π‘Ÿ 0 is the initial state 2/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  6. System Model 𝐻 = (𝑅, Ξ£, πœ€, π‘Ÿ 0 ) is a deterministic FSA β€’ 𝑅 is the finite set of states; β€’ Ξ£ is the finite set of events; β€’ πœ€: 𝑅 Γ— Ξ£ β†’ 𝑅 is the partial transition function; β€’ π‘Ÿ 0 is the initial state β€’ Ξ£ = Ξ£ 𝑝 βˆͺ Ξ£ 𝑑 βˆͺ Ξ£ 𝑣𝑝 β€’ A sensing decision is a set of events πœ„ ∈ 2 Ξ£ s.t. Ξ£ 𝑝 βŠ† πœ„ βŠ† Ξ£ 𝑝 βˆͺ Ξ£ 𝑑 Θ denotes the set of sensing decisions β€’ Information mapping πœ•: β„’ 𝐻 β†’ Θ πœ• : β„’ 𝐻 β†’ Ξ£ 𝑝 βˆͺ Ξ£ 𝑑 βˆ— denotes the corresponding projection 𝑄 β€’ A sensor activation policy is an information mapping πœ•: β„’ 𝐻 β†’ Θ s.t. βˆ€π‘‘, 𝑒 ∈ β„’ 𝐻 : 𝑄 πœ• 𝑑 = 𝑄 πœ• 𝑒 β‡’ πœ• 𝑑 = πœ•(𝑒) 2/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  7. Information-State-Based Property Information State: a set of states, 𝐽 ≔ 2 𝑅 Information-State-Based Property β€’ Let 𝐻 be the system automaton and πœ•: β„’ 𝐻 β†’ Θ be a sensor activation policy. An IS-based property w.r.t. 𝐻 is a function πœ’: 2 𝑅 β†’ *0,1+ We say that πœ• satisfies πœ’ w.r.t. 𝐻 , denoted by πœ• ⊨ 𝐻 πœ’ , if 𝐻 𝑑 ) = 1 βˆ€π‘‘ ∈ β„’ 𝐻 : πœ’(β„° πœ• where 𝐻 𝑑 = *π‘Ÿ ∈ 𝑅: βˆƒπ‘’ ∈ 𝑀 𝑑. 𝑒. 𝑄 β„° πœ• πœ• 𝑒 = 𝑄 πœ• 𝑑 ∧ πœ€ π‘Ÿ 0 , 𝑒 = π‘Ÿ+ 3/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  8. IS-based Properties β€’ Information-State-Based Properties β€’ Opacity: privacy applications β€’ Diagnosability: fault detection and isolation β€’ Predictability: fault prognosis β€’ Detectability: state estimation β€’ Anonymity: privacy applications β€’ Etc. 4/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  9. Example 1 𝑓 𝑝 1 2 3 7 𝑔 𝜏 1 𝑝 𝑓 𝜏 2 𝑝 𝑓, 𝜏 1 4 5 6 IS-based Property πœ’: 2 𝑅 β†’ *0,1+ β€’ βˆ€ 𝑗 ∈ 2 𝑅 : πœ’ 𝑗 = 1 ⇔ ,βˆ„π‘Ÿ ∈ 1,4,5,6 : 3, π‘Ÿ βŠ† 𝑗- 5/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  10. Example 1 𝑓 𝑝 1 2 3 7 𝑔 𝜏 1 𝑝 𝑓 𝜏 2 𝑝 𝑓, 𝜏 1 4 5 6 IS-based Property πœ’: 2 𝑅 β†’ *0,1+ β€’ βˆ€ 𝑗 ∈ 2 𝑅 : πœ’ 𝑗 = 1 ⇔ ,βˆ„π‘Ÿ ∈ 1,4,5,6 : 3, π‘Ÿ βŠ† 𝑗- β€’ Sensor Activation Policy πœ•: β„’ 𝐻 β†’ Θ βˆ€π‘‘ ∈ β„’ 𝐻 : πœ• 𝑑 = *𝑝+ 5/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  11. Example 1 𝑓 𝑝 1 2 3 7 𝑔 𝜏 1 𝑝 𝑓 𝜏 2 𝑝 𝑓, 𝜏 1 4 5 6 IS-based Property πœ’: 2 𝑅 β†’ *0,1+ β€’ βˆ€ 𝑗 ∈ 2 𝑅 : πœ’ 𝑗 = 1 ⇔ ,βˆ„π‘Ÿ ∈ 1,4,5,6 : 3, π‘Ÿ βŠ† 𝑗- β€’ Sensor Activation Policy πœ•: β„’ 𝐻 β†’ Θ βˆ€π‘‘ ∈ β„’ 𝐻 : πœ• 𝑑 = *𝑝+ β€’ The IS-based property is not satisfied, i.e., πœ• ⊭ πœ’ 𝐻 𝑓𝑝 = *πŸ’, πŸ•+ β„° πœ• 5/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  12. Example 1 𝑓 𝑝 1 2 3 7 𝑔 𝜏 1 𝑝 𝑓 𝜏 2 𝑝 𝑓, 𝜏 1 4 5 6 IS-based Property πœ’: 2 𝑅 β†’ *0,1+ β€’ βˆ€ 𝑗 ∈ 2 𝑅 : πœ’ 𝑗 = 1 ⇔ ,βˆ„π‘Ÿ ∈ 1,4,5,6 : 3, π‘Ÿ βŠ† 𝑗- β€’ Sensor Activation Policy πœ•: β„’ 𝐻 β†’ Θ βˆ€π‘‘ ∈ β„’ 𝐻 : πœ• 𝑑 = *𝑝+ β€’ The IS-based property is not satisfied, i.e., πœ• ⊭ πœ’ 𝐻 𝑓𝑝 = *πŸ’, πŸ•+ β„° πœ• β€’ State-disambiguation problem 5/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  13. Example 2 IS-based Property πœ’: 2 𝑅 β†’ *0,1+ β€’ βˆ€ 𝑗 ∈ 2 𝑅 : πœ’ 𝑗 = 1 ⇔ ,𝑗 ⊈ π‘Œ 𝑇𝑓𝑑𝑠𝑓𝑒 - , where π‘Œ 𝑇𝑓𝑑𝑠𝑓𝑒 βŠ† π‘Œ β€’ Opacity problem 𝑒 𝑑 𝑄 πœ• 𝑑 = 𝑄 πœ• (𝑒) S NS 6/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  14. Problem Formulation β€’ Minimal Sensor Activation Problem for IS-Based Properties Let 𝐻 = (𝑅, Ξ£, πœ€, π‘Ÿ 0 ) be the system automaton and πœ’: 2 𝑅 β†’ *0,1+ be an IS-based property w.r.t. 𝐻 . Find a sensor activation policy πœ• such that (i) πœ• ⊨ 𝐻 πœ’ (IS-based Property) (ii) βˆ„πœ• β€² ∈ Ξ© such that πœ• ⊨ 𝐻 πœ’ and πœ• β€² < πœ• . (Minimality) The Maximal Sensor Activation Problem is also defined analogously. πœ• β€² < πœ• is defined in terms of set inclusion. 7/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  15. Literature Review Dynamic Sensor Activation Problem β€’ Thorsley, D., & Teneketzis, D. (2007). Active acquisition of information for diagnosis and supervisory control of discrete event systems. Discrete Event Dynamic Systems, 17(4), 531-583. β€’ Cassez, F., & Tripakis, S. (2008). Fault diagnosis with static and dynamic observers. Fundamenta Informaticae, 88(4), 497-540. β€’ Wang, W., Lafortune, S., Lin, F., & Girard, A. R. (2010). Minimization of dynamic sensor activation in discrete event systems for the purpose of control. IEEE Transactions on Automatic Control, 55(11), 2447-2461. β€’ Wang, W., Lafortune, S., Girard, A. R., & Lin, F. (2010). Optimal sensor activation for diagnosing discrete event systems. Automatica, 46(7), 1165-1175. β€’ Cassez, F., Dubreil, J., & Marchand, H. (2012). Synthesis of opaque systems with static and dynamic masks. Formal Methods in System Design, 40(1), 88-115. β€’ Shu, S., Huang, Z., & Lin, F. (2013). Online sensor activation for detectability of discrete event systems. IEEE Transactions on Automation Science and Engineering, 10(2), 457-461. β€’ Dallal, E., & Lafortune, S. (2014). On most permissive observers in dynamic sensor activation problems. Automatic Control, IEEE Transactions on, 59(4), 966-981. β€’ Sears, D., & Rudie, K. (2015). Minimal sensor activation and minimal communication in discrete-event systems. Discrete Event Dynamic Systems, 1-55. 8/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  16. Literature Review Dynamic Sensor Activation Problem β€’ Thorsley, D., & Teneketzis, D. (2007). Active acquisition of information for diagnosis and supervisory control of discrete event systems. Discrete Event Dynamic Systems, 17(4), 531-583. β€’ Cassez, F., & Tripakis, S. (2008). Fault diagnosis with static and dynamic observers. Fundamenta Informaticae, 88(4), 497-540. β€’ Wang, W., Lafortune, S., Lin, F., & Girard, A. R. (2010). Minimization of dynamic sensor activation in discrete event systems for the purpose of control. IEEE Transactions on Automatic Control, 55(11), 2447-2461. β€’ Wang, W., Lafortune, S., Girard, A. R., & Lin, F. (2010). Optimal sensor activation for diagnosing discrete event systems. Automatica, 46(7), 1165-1175. β€’ Cassez, F., Dubreil, J., & Marchand, H. (2012). Synthesis of opaque systems with static and dynamic masks. Formal Methods in System Design, 40(1), 88-115. β€’ Shu, S., Huang, Z., & Lin, F. (2013). Online sensor activation for detectability of discrete event systems. IEEE Transactions on Automation Science and Engineering, 10(2), 457-461. β€’ Dallal, E., & Lafortune, S. (2014). On most permissive observers in dynamic sensor activation problems. Automatic Control, IEEE Transactions on, 59(4), 966-981. β€’ Sears, D., & Rudie, K. (2015). Minimal sensor activation and minimal communication in discrete-event systems. Discrete Event Dynamic Systems, 1-55. β€’ Different approaches for different properties β€’ The sensor activation problems for some properties have not been considered β€’ Need general approach 8/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  17. Bipartite Dynamic Observer Bipartite Dynamic Observer (BDO) β€’ 𝒫 , β„Ž π‘Žπ‘ 𝒫 , 𝐹, Ξ“, 𝑧 0 𝒫 , 𝑅 π‘Ž 𝒫 , β„Ž π‘π‘Ž ) A bipartite dynamic observer 𝒫 w.r.t. G is a 7-tuple 𝒫 = (𝑅 𝑍 𝒫 βŠ† 𝐽 is the set of Y-states; β€’ 𝑅 𝑍 𝒫 βŠ† 𝐽 Γ— Θ is the set of Z-states so that z = (𝐽 𝑨 , Θ 𝑨 ) ; β€’ 𝑅 π‘Ž 𝒫 : 𝑅 𝑍 𝒫 Γ— Θ β†’ Q π‘Ž 𝒫 represents the unobservable reach; β€’ β„Ž π‘π‘Ž 𝒫 : 𝑅 π‘Ž 𝒫 Γ— Ξ£ β†’ Q 𝑍 𝒫 represents the observable reach; β€’ β„Ž π‘Žπ‘ = *π‘Ÿ 0 + is the initial state. β€’ 𝑧 0 9/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

Recommend


More recommend