A General Approach for Solving Dynamic Sensor Activation Problems for a Class of Properties Xiang Yin and StΓ©phane Lafortune EECS Department, University of Michigan 54th IEEE CDC, Dec 15-18, 2015, Osaka, Japan 0/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Introduction β’ Dynamic Sensor Activation Problem 2 3 0 4 π‘ 1 5 Plant G π π(π‘) Observer 1/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Introduction β’ Dynamic Sensor Activation Problem 2 3 0 4 π‘ 1 5 Sensor Activation Plant G Module π π π π (π‘) Observer 1/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Introduction β’ Dynamic Sensor Activation Problem 2 3 0 4 π‘ 1 5 Sensor Activation Plant G Module π π π π (π‘) Property β Observer 1/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
System Model π» = (π , Ξ£, π, π 0 ) is a deterministic FSA β’ π is the finite set of states; β’ Ξ£ is the finite set of events; β’ π: π Γ Ξ£ β π is the partial transition function; β’ π 0 is the initial state 2/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
System Model π» = (π , Ξ£, π, π 0 ) is a deterministic FSA β’ π is the finite set of states; β’ Ξ£ is the finite set of events; β’ π: π Γ Ξ£ β π is the partial transition function; β’ π 0 is the initial state β’ Ξ£ = Ξ£ π βͺ Ξ£ π‘ βͺ Ξ£ π£π β’ A sensing decision is a set of events π β 2 Ξ£ s.t. Ξ£ π β π β Ξ£ π βͺ Ξ£ π‘ Ξ denotes the set of sensing decisions β’ Information mapping π: β π» β Ξ π : β π» β Ξ£ π βͺ Ξ£ π‘ β denotes the corresponding projection π β’ A sensor activation policy is an information mapping π: β π» β Ξ s.t. βπ‘, π’ β β π» : π π π‘ = π π π’ β π π‘ = π(π’) 2/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Information-State-Based Property Information State: a set of states, π½ β 2 π Information-State-Based Property β’ Let π» be the system automaton and π: β π» β Ξ be a sensor activation policy. An IS-based property w.r.t. π» is a function π: 2 π β *0,1+ We say that π satisfies π w.r.t. π» , denoted by π β¨ π» π , if π» π‘ ) = 1 βπ‘ β β π» : π(β° π where π» π‘ = *π β π : βπ’ β π π‘. π’. π β° π π π’ = π π π‘ β§ π π 0 , π’ = π+ 3/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
IS-based Properties β’ Information-State-Based Properties β’ Opacity: privacy applications β’ Diagnosability: fault detection and isolation β’ Predictability: fault prognosis β’ Detectability: state estimation β’ Anonymity: privacy applications β’ Etc. 4/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Example 1 π π 1 2 3 7 π π 1 π π π 2 π π, π 1 4 5 6 IS-based Property π: 2 π β *0,1+ β’ β π β 2 π : π π = 1 β ,βπ β 1,4,5,6 : 3, π β π- 5/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Example 1 π π 1 2 3 7 π π 1 π π π 2 π π, π 1 4 5 6 IS-based Property π: 2 π β *0,1+ β’ β π β 2 π : π π = 1 β ,βπ β 1,4,5,6 : 3, π β π- β’ Sensor Activation Policy π: β π» β Ξ βπ‘ β β π» : π π‘ = *π+ 5/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Example 1 π π 1 2 3 7 π π 1 π π π 2 π π, π 1 4 5 6 IS-based Property π: 2 π β *0,1+ β’ β π β 2 π : π π = 1 β ,βπ β 1,4,5,6 : 3, π β π- β’ Sensor Activation Policy π: β π» β Ξ βπ‘ β β π» : π π‘ = *π+ β’ The IS-based property is not satisfied, i.e., π β π π» ππ = *π, π+ β° π 5/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Example 1 π π 1 2 3 7 π π 1 π π π 2 π π, π 1 4 5 6 IS-based Property π: 2 π β *0,1+ β’ β π β 2 π : π π = 1 β ,βπ β 1,4,5,6 : 3, π β π- β’ Sensor Activation Policy π: β π» β Ξ βπ‘ β β π» : π π‘ = *π+ β’ The IS-based property is not satisfied, i.e., π β π π» ππ = *π, π+ β° π β’ State-disambiguation problem 5/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Example 2 IS-based Property π: 2 π β *0,1+ β’ β π β 2 π : π π = 1 β ,π β π ππππ ππ’ - , where π ππππ ππ’ β π β’ Opacity problem π’ π‘ π π π‘ = π π (π’) S NS 6/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Problem Formulation β’ Minimal Sensor Activation Problem for IS-Based Properties Let π» = (π , Ξ£, π, π 0 ) be the system automaton and π: 2 π β *0,1+ be an IS-based property w.r.t. π» . Find a sensor activation policy π such that (i) π β¨ π» π (IS-based Property) (ii) βπ β² β Ξ© such that π β¨ π» π and π β² < π . (Minimality) The Maximal Sensor Activation Problem is also defined analogously. π β² < π is defined in terms of set inclusion. 7/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Literature Review Dynamic Sensor Activation Problem β’ Thorsley, D., & Teneketzis, D. (2007). Active acquisition of information for diagnosis and supervisory control of discrete event systems. Discrete Event Dynamic Systems, 17(4), 531-583. β’ Cassez, F., & Tripakis, S. (2008). Fault diagnosis with static and dynamic observers. Fundamenta Informaticae, 88(4), 497-540. β’ Wang, W., Lafortune, S., Lin, F., & Girard, A. R. (2010). Minimization of dynamic sensor activation in discrete event systems for the purpose of control. IEEE Transactions on Automatic Control, 55(11), 2447-2461. β’ Wang, W., Lafortune, S., Girard, A. R., & Lin, F. (2010). Optimal sensor activation for diagnosing discrete event systems. Automatica, 46(7), 1165-1175. β’ Cassez, F., Dubreil, J., & Marchand, H. (2012). Synthesis of opaque systems with static and dynamic masks. Formal Methods in System Design, 40(1), 88-115. β’ Shu, S., Huang, Z., & Lin, F. (2013). Online sensor activation for detectability of discrete event systems. IEEE Transactions on Automation Science and Engineering, 10(2), 457-461. β’ Dallal, E., & Lafortune, S. (2014). On most permissive observers in dynamic sensor activation problems. Automatic Control, IEEE Transactions on, 59(4), 966-981. β’ Sears, D., & Rudie, K. (2015). Minimal sensor activation and minimal communication in discrete-event systems. Discrete Event Dynamic Systems, 1-55. 8/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Literature Review Dynamic Sensor Activation Problem β’ Thorsley, D., & Teneketzis, D. (2007). Active acquisition of information for diagnosis and supervisory control of discrete event systems. Discrete Event Dynamic Systems, 17(4), 531-583. β’ Cassez, F., & Tripakis, S. (2008). Fault diagnosis with static and dynamic observers. Fundamenta Informaticae, 88(4), 497-540. β’ Wang, W., Lafortune, S., Lin, F., & Girard, A. R. (2010). Minimization of dynamic sensor activation in discrete event systems for the purpose of control. IEEE Transactions on Automatic Control, 55(11), 2447-2461. β’ Wang, W., Lafortune, S., Girard, A. R., & Lin, F. (2010). Optimal sensor activation for diagnosing discrete event systems. Automatica, 46(7), 1165-1175. β’ Cassez, F., Dubreil, J., & Marchand, H. (2012). Synthesis of opaque systems with static and dynamic masks. Formal Methods in System Design, 40(1), 88-115. β’ Shu, S., Huang, Z., & Lin, F. (2013). Online sensor activation for detectability of discrete event systems. IEEE Transactions on Automation Science and Engineering, 10(2), 457-461. β’ Dallal, E., & Lafortune, S. (2014). On most permissive observers in dynamic sensor activation problems. Automatic Control, IEEE Transactions on, 59(4), 966-981. β’ Sears, D., & Rudie, K. (2015). Minimal sensor activation and minimal communication in discrete-event systems. Discrete Event Dynamic Systems, 1-55. β’ Different approaches for different properties β’ The sensor activation problems for some properties have not been considered β’ Need general approach 8/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Bipartite Dynamic Observer Bipartite Dynamic Observer (BDO) β’ π« , β ππ π« , πΉ, Ξ, π§ 0 π« , π π π« , β ππ ) A bipartite dynamic observer π« w.r.t. G is a 7-tuple π« = (π π π« β π½ is the set of Y-states; β’ π π π« β π½ Γ Ξ is the set of Z-states so that z = (π½ π¨ , Ξ π¨ ) ; β’ π π π« : π π π« Γ Ξ β Q π π« represents the unobservable reach; β’ β ππ π« : π π π« Γ Ξ£ β Q π π« represents the observable reach; β’ β ππ = *π 0 + is the initial state. β’ π§ 0 9/17 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Recommend
More recommend