a flexible parameterization of gpds their role in dvcs
play

A Flexible Parameterization of GPDs & Their Role in DVCS & - PowerPoint PPT Presentation

A Flexible Parameterization of GPDs & Their Role in DVCS & Neutral Meson Leptoproduction Gary R. Goldstein Tufts University Simonetta Liuti, S. Ahmad, Osvaldo Gonzalez-Hernandez University of Virginia Presentation for PANIC MIT July 2011


  1. A Flexible Parameterization of GPDs & Their Role in DVCS & Neutral Meson Leptoproduction Gary R. Goldstein Tufts University Simonetta Liuti, S. Ahmad, Osvaldo Gonzalez-Hernandez University of Virginia Presentation for PANIC MIT July 2011 These ideas were developed in Trento ECT*, INT, Jlab, DIS2011, Frascati INF, . . . 1 1

  2. Outline New “ Flexible ” parameterization for Chiral Even GPDs Regge ✖ diquark spectator model Satisfies all constraints Results for DVCS (transverse γ *  transverse γ ) cross sections & asymmetries Extend to Chiral Odd GPDs via diquark spin relations Some simple relations between Chiral even & odd helicity amps π 0 , η , η ’ production data involve sizable γ * Transverse [Collins, Franfurt, Strikman] ) (factorization shown at leading twist for γ * Longitudinal γ * T requires requires chiral odd GPDs Q 2 dependence for π 0 depends on γ * +( ρ , b 1 )  π 0 π 0 cross sections & asymmetries 2 PANIC2011 GR.Goldstein

  3. DVCS & DVMP γ *(Q 2 )+P → ( γ or meson)+P ’ 
 partonic picture q q+ Δ } { k T k' T =k T - Δ k + =XP + k' + =(X- ζ )P + GPD P + P' + =(1- ζ )P + } P ’ T =- Δ Factorized “ handbag ” ζ→ 0 t picture Regge Quark-spectator quark+diquark X> ζ DGLAP Δ T -> b T transverse spatial X< ζ ERBL x=(X- ζ /2)/(1- ζ /2); ξ = ζ /(2- ζ ) see Ahmad, GG, Liuti, PRD79, 054014, (2009) for first chiral odd GPD parameterization focused on pseudoscalar production 3 3 PANIC2011 GR.Goldstein 7/24/11

  4. Momentum space nucleon matrix elements of quark field correlators see, e.g. M. Diehl, Eur. Phys. J. C 19, 485 (2001). Chiral even GPDs -> Ji sum rule x = 1 [ ] x � dx H ( x ,0,0) + E ( x ,0,0) J q 2 Chiral odd GPDs -> transversity 4 PANIC2011 GR.Goldstein 4 7/24/11

  5. How to determine GPDs? Flexible Parameterization  Recursive Fit CHIRAL EVENS: O. Gonzalez Hernandez, G. G., S. Liuti, arXiV:1012.3776 PRD accepted 1 � dxH ( x , � , t ) = F 1 ( t ) Constraints from Form Factors Dirac 0 1 � dxE ( x , � , t ) = F 2 ( t ) Pauli, etc. including Axial 0 & Pseudoscalar How can these be independent of ξ ? Constraints from Polynomiality Result of Lorentz invariance & causality. Not necessarily built into models + 1 ( t ) � k + 1 � ( � 1) n � � n dx x n H ( x , � , t ) = C n ( t ) � n + 1 A n , k 2 k = 0, 2,.. � 1 1 n n - 1- (-1) � dx x n E ( x , � , t ) � = B n , k ( t ) � k C n ( t ) � n + 1 2 k = 0,2,... � 1 Constraints from pdf ’ s: H (x,0,0)= f 1 (x), H ~(x,0,0)= g 1 (x), H T (x,0,0)= h 1 (x) 7/24/11 5 5 PANIC2011 GR.Goldstein

  6. Spectator inspired model of GPDs • 2 directions –  1. getting good parameterization of H, E & ~H, ~E satisfying many constraints ( see O. Gonzalez-Hernandez, GG, S. Liuti arXiv: 1012.3776)  2. getting 8 spin dependent GPDs • Chiral Odd GPDs π 0 production is testing ground (New results – preliminary) • Simplest Spectator -- scalar diquark – helicity amps for P  q ::::: q ’  P ’ Spin simplicity - P  q+diq and q ’ +diq  P ’ are spin disconnected => Chiral even related to Chiral odd GPDs Chiral even related to Chiral odd GPDs H, E, . .  helicity amp relations  H T , E T , . . • Axial diquark: more complex linear relations & distinction between u & d flavors 7/24/11 6 PANIC2011 GR.Goldstein 6

  7. Spectator inspired model (cont ’ d) • u + scalar (ud+du) -> u struck quark • axial (uu, ud-du, dd) -> d and u struck : 3 – relations among helicity amps => at ξ & t not 0 • E=- ξ E T + E T ~ , ξ E ~ = - 2H T ~ - E T + ξ E T ~ (multiplied by √ (t 0 -t)) H T +(t 0 -t)H T ~ /4M 2 = (H+H ~ )/2– ξ [(1+ ξ /2)E+ ξ E ~ ]/(1- ξ 2 ) and H T ~ in terms of chiral evens Could apply to u-quark GPDs – part that has scalar if same Regge factors • Regge-like behavior 1/x α (t) could differentiate among GPDs depending on t -channel quantum numbers 7 PANIC2011 GR.Goldstein

  8. Vertex Structures λ λ ’ k ’ + =(X- ζ )P + k + =XP + Λ P ’ + =(1- ζ )P + P + P X + =(1-X)P + P X + =(1-X)P + Λ ’ S=0 or 1 First focus e.g. on S=0 pure spectator * ( k ', P ') � ++ ( k , P ) + � * ( k ', P ') � � + ( k , P ) H � � + + � + * ( k ', P ') � + � ( k , P ) + � * ( k ', P ') � + + ( k , P ) E � � ++ + � * ( k ', P ') � ++ ( k , P ) � � * ( k ', P ') � � + ( k , P ) � H � � ++ � + * ( k ', P ') � + � ( k , P ) � � * ( k ', P ') � ++ ( k , P ) � E � � ++ + � Vertex functions Φ 8 PANIC2011 GR.Goldstein

  9. Vertex Structures λ λ ’ k ’ + =(X- ζ )P + k + =XP + Λ P ’ + =(1- ζ )P + P + P X + =(1-X)P + P X + =(1-X)P + Λ ’ S=0 or 1 First focus e.g. on S=0 pure spectator Note that by switching * ( k ', P ') � ++ ( k , P ) + � * ( k ', P ') � � + ( k , P ) H � � λ  - λ & Λ  - Λ (Parity) + + � + will have chiral evens * ( k ', P ') � + � ( k , P ) + � * ( k ', P ') � + + ( k , P ) E � � go to ± chiral odds ++ + � giving relations – * ( k ', P ') � ++ ( k , P ) � � * ( k ', P ') � � + ( k , P ) � H � � before k integrations ++ � + * ( k ', P ') � + � ( k , P ) � � * ( k ', P ') � ++ ( k , P ) � A( Λ ’ λ ’ ; Λλ )  E � � ± A( Λ ’ , λ ’ ;- Λ ,- λ ) ++ + � Vertex function Φ but then ( Λ ’ - λ ’ )-( Λ - λ ) ≠ ( Λ ’ - λ ’ )+( Λ - λ ) unless Λ = λ 9 PANIC2011 GR.Goldstein

  10. Helicity amps (q’+N->q+N’) are linear combinations of GPDs In diquark spectator models A ++;++ , etc. are calculated directly. Inverted -> GPDs 7/24/11 10 PANIC2011 GR.Goldstein 10

  11. Invert to obtain model for GPDs A ++,-+ = - A ++,+- A -+,++ = - A +-,++ A ++,++ = A ++,-- double flip 7/24/11 11 PANIC2011 GR.Goldstein 11

  12. Fitting Procedure e.g. for H and E Fit at ζ =0, t=0 ⇒ H q (x,0,0)=q(X) ✔ 3 parameters per quark flavor (M X q , Λ q , α q ) + initial Q o 2 ✔ Fit at ζ =0, t ≠ 0 ⇒ ✔ 2 parameters per quark flavor ( β , p) ✔ R = X � [ � + � '(1 � X ) p t + � ( � ) t ] Regge factor Quark-Diquark Fit at ζ≠ 0, t ≠ 0 ⇒ DVCS, DVMP,… data (convolutions of GPDs with ✔ Wilson coefficient functions) + lattice results (Mellin Moments of GPDs) Note! This is a multivariable analysis ⇒ see e.g. Moutarde, ✔ 12 Kumericki and D. Mueller, Guidal and Moutarde

  13. Reggeized diquark mass formulation Diquark spectral function “ Regge ” ρ ∝δ (M X 2 -M X 2 ) ∝ (M X 2 ) α + Q 2 Evolution M X 2 Following DIS work by Brodsky, Close, Gunion (1973) 13 PANIC2011 GR.Goldstein

  14. Flexible Parametrization of Generalized Parton Distributions from Deeply Virtual Compton Scattering Observables Gary R. Goldstein, J. Osvaldo Gonzalez Hernandez , Simonetta Liuti arXiv:1012.3776 14 PANIC2011 GR.Goldstein

  15. 15 PANIC2011 GR.Goldstein

  16. Compton Form Factors  Real & Imaginary Parts 16 PANIC2011 GR.Goldstein

  17. 17 PANIC2011 GR.Goldstein

  18. Observables Note GPD & Bethe-Heitler separate amplitudes -> interference linear in GPD 18 PANIC2011 GR.Goldstein

  19. Hall B data A LU (90 o ) 19

  20. Hermes data 20 PANIC2011 GR.Goldstein

  21. A LU (90 o ) -t=0.118 GeV 2 -t=0.118 GeV 2 x=0.097 0.1 Q 2 =2.5 GeV 2 Q 2 =2.5 GeV 2 x=0.097 0 -0.1 -0.2 -0.3 -0.4 -0.5 Hermes kinematics -0.6 0.1 0 -0.1 -0.2 -0.3 -0.4 no DVCS -0.5 Hermes kinematics -0.6 -2 -1 -1 10 10 1 1 10 -t (GeV 2 ) Q 2 (GeV 2 ) x Bj 21 PANIC2011 GR.Goldstein

  22. Interference contribution to cos( φ ) term in DVCS cross section 22 PANIC2011 GR.Goldstein

  23. 23 PANIC2011 GR.Goldstein

  24. Exclusive Lepto-production of π o or η , η ’ to measure chiral odd GPDs π o +1,0 + 1/2 q nos of C-odd +1,0 1 - - exchange - 1/2 + 1/2 - 1/2 1 +- exchange + 1/2 N b 1 & h 1 N - 1/2 + 1/2 e.g. f +1+,0- (s,t,Q 2 ) π o g +1+,0- A ++,- - What about coupling of π to q → q ′ ? Assumed γ 5 vertex H T +1,0 Then for m quark =0 has to flip helicity b 1 & h 1 for q →π +q ′ and q ⋅ q ′ ≠ 0. Naïve twist 3 ψ bar γ 5 ψ - 1/2 + 1/2 N Rather than γ µ γ 5 – does not flip twist 2. But q ’ γ µ γ 5 q N will not contribute to transverse γ . Differs from t- channel approach to Regge factorization 24 24 PANIC2011 GR.Goldstein 7/24/11

  25. Q 2 dependent form factors t-channel view see Belitsky, Ji, Yuan (2007) & Ng (2007) 7/24/11 25 25 PANIC2011 G.R.Goldstein

  26. New Chiral Odd GPDs & exclusive π 0 electroproduction 50 x Bj =0.41 40 Q 2 =3.2 GeV 2 30 Cross Section σ T + εσ L 20 10 σ LT 0 -10 σ TT -20 0 0.2 0.4 0.6 0.8 1 1.2 1.4 -t (GeV 2 ) 26 PANIC2011 GR.Goldstein

  27. New Chiral Odd GPDs & exclusive π 0 electroproduction 50 x Bj =0.41 40 Q 2 =3.2 GeV 2 30 Cross Section 20 10 0 -10 -20 0 0.2 0.4 0.6 0.8 1 1.2 1.4 -t (GeV 2 ) σ T + εσ L data:Q 2 ≈ 3.2 GeV 2 , x ≈ 0.41 σ LT σ TT preliminary data courtesy V. Kubarovsky, HallB 27 PANIC2011 GR.Goldstein

  28. New Chiral Odd GPDs & exclusive π 0 electroproduction 100 x Bj =0.19 80 Q 2 =2.3 GeV 2 60 Cross Section 40 σ T + εσ L 20 σ LT 0 -20 σ TT -40 0 0.2 0.4 0.6 0.8 1 1.2 1.4 -t (GeV 2 ) 28 PANIC2011 GR.Goldstein

Recommend


More recommend