a direct solver for poisson s equation using spectral
play

A direct solver for Poissons equation using spectral element - PowerPoint PPT Presentation

A direct solver for Poissons equation using spectral element discretization Li Lu November 29, 2017 1/23 Motivation & Background Combine the following two parts to get a direct solver High-order spectral approximation methods


  1. A direct solver for Poisson’s equation using spectral element discretization Li Lu November 29, 2017 1/23

  2. Motivation & Background Combine the following two parts to get a direct solver High-order spectral approximation methods Hierarchical solver [mar, 2013] 2/23

  3. Methodology Within the paper, Martinsson used spectral collocation method presented performance and accuracy data 3/23

  4. Plan for presentation In this talk I will cover the following: Algorithm Numerical results 4/23

  5. Introduction to spectral element method(SEM) Spectral element method(SEM) is in effect a high-order finite element method Basis functions: Lagrange polynomials on Gauss-Lobatto-Legendre(GLL) points Galerkin = ⇒ test function space is the same as basis function 5/23

  6. SEM triangulation Discretize the domain into a union of quadrilateral (squares or rectangles for simple cases) Example mesh 6/23

  7. SEM formulation for Poisson’s equation Poisson’s equation with inhomogeneous Dirichlet boundary condition and no forcing term reads ∇ 2 u = 0 , u | ∂ Ω = f Weak form � ∇ v · ∇ u d V = 0 Ω or in matrix operator form A u = 0 7/23

  8. Methodology: one element case Solving for the interior points: A i , i u i = − A i , e u e (1) u i = − ( A i , i ) − 1 A i , e u e = U u e Using derivative operators D = ∂ x and E = ∂ y to define Dirichlet-to-Neumann(DtN) operators that find the partial derivatives on the exterior points Figure: One element GLL v e = ( D e , e + D e , i U ) u e = V u e ≈ ∂ x u e points. Source: [mar, w e = ( E e , e + E e , i U ) u e = W u e ≈ ∂ y u e 2013] (2) 8/23

  9. Methodology: multiple element case Index sets when two spectral elements are side-by-side Figure: Index sets. Source: [mar, 2013] 9/23

  10. Methodology: multiple element case Merging operation: from points on the boundaries of box α , β , find operators U , V , W for the combined box(ext. to int., ext. to ext.) I 4 : interior points; I 1 , I 2 , I 3 : exterior points Ordering in the following way       u 1 v 1 u 1  ,  = V u 4 = U u e = U u 2 v = v 2 u 2     u 3 v 3 u 3 10/23

  11. Methodology: multiple element case Box boundary equilibrium: normal derivatives match If aligned horizontally 4 , 4 ) − 1 � � 4 , 4 − V β 4 , 1 | V β 4 , 2 | V β U = ( V α − V α 4 , 3 − V α (3) 4 , 3 If aligned vertically 4 , 4 ) − 1 � � 4 , 4 − W β 4 , 1 | W β 4 , 2 | W β U = ( W α − W α 4 , 3 − W α (4) 4 , 3 11/23

  12. Methodology: multiple element case Next, find DtN operators V , W V α V α V α 0     1 , 1 1 , 3 1 , 4 V β V β V β  +  U V = 0 2 , 2 2 , 3 2 , 4   1 2 V β 1 1 3 , 3 + 1 2 V β 1 3 , 4 + 1 2 V β 2 V α 2 V α 2 V α 3 , 1 3 , 2 3 , 3 3 , 4 (5) W α W α W α  0    1 , 1 1 , 3 1 , 4 W β W β W β  U W = 0  +  2 , 2 2 , 3  2 , 4 2 W β 2 W β 2 W β 1 1 1 3 , 3 + 1 1 3 , 4 + 1 2 W α 2 W α 2 W α 3 , 1 3 , 2 3 , 3 3 , 4 (6) 12/23

  13. Methodology: hierarchical scheme Consider a square domain, construct a binary tree Figure: Box ids. Source: [mar, 2013] 13/23

  14. Methodology: hierarchical scheme Algorithm 1 Pre-computation(build) 1: for τ = N boxes to 1 do 2: if τ is a leaf then Eval U τ , V τ , W τ , Eqs: 1,2 3: 4: else 5: Let σ 1 , σ 2 be the children of τ 6: if σ 1 and σ 2 are horizontal then Eval U τ using V α,β , Eq 3 7: 8: else Eval U τ using W α,β , Eq 4 9: 10: end if Eval V τ , W τ , Eqs: 5,6 11: 12: end if 13: end for 14/23

  15. Methodology: hierarchical scheme Algorithm 2 Forward solve 1: Find boundary data for box 1 u = f ( x ) 2: for τ = 1 to N boxes do u ( I τ i ) = U τ u ( I τ 3: e ) 4: end for 15/23

  16. Verification case: problem setup On domain [0 , 1] 2 , function u = cos kx exp ky is an exact solution to the Poisson’s equation, and has nontrivial boundary values Take k = π/ 2 1.0 5.6 4.8 0.8 4.0 0.6 3.2 2.4 0.4 1.6 0.2 0.8 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Figure: Exact solution 16/23

  17. Verification case: series of solution 1.0 5.6 1.0 5.6 1.0 5.6 4.8 4.8 4.8 0.8 0.8 0.8 4.0 4.0 4.0 3.2 3.2 3.2 0.6 0.6 0.6 2.4 2.4 2.4 1.6 1.6 1.6 0.4 0.4 0.4 0.8 0.8 0.8 0.0 0.0 0.0 0.2 0.2 0.2 −0.8 −0.8 −0.8 0.0 −1.6 0.0 −1.6 0.0 −1.6 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Figure: Procedural solution 17/23

  18. Verification case: series of solution 1.0 5.6 1.0 5.6 4.8 4.8 0.8 0.8 4.0 4.0 3.2 3.2 0.6 0.6 2.4 2.4 1.6 1.6 0.4 0.4 0.8 0.8 0.0 0.0 0.2 0.2 −0.8 −0.8 0.0 −1.6 0.0 −1.6 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Figure: Procedural solution(continued) 18/23

  19. Verification case: series of solution The final solution and the error 1e−14 1.0 5.6 1.0 9.0 4.8 7.5 0.8 0.8 4.0 6.0 0.6 0.6 3.2 4.5 2.4 3.0 0.4 0.4 1.6 1.5 0.2 0.2 0.8 0.0 0.0 0.0 0.0 −1.5 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Figure: Final solution and error 19/23

  20. Verification case: convergence L2 norm error as N increases: N Direct solve SEM inverse D.o.f. N=4 7.241619e-05 4.607383e-06 81 N=6 9.484310e-07 2.703998e-09 169 N=8 1.976962e-10 1.138766e-12 289 N=10 8.856289e-13 3.308540e-13 441 N=12 1.160633e-13 1.927155e-13 625 20/23

  21. Timing: solve Solution time wise, this algorithm is fairly competitive to solving normal SEM with CG Direct(err) SEM-Iter.(err) Direct(time, s ) SEM-Iter.(time, s ) N N=6 9.4843e-07 1.3211e-07 1.4010e-03 3.4709e-03 N=8 1.9770e-10 4.4944e-10 1.0770e-03 5.1010e-03 N=10 8.8563e-13 4.9215e-12 1.6313e-03 1.9790e-02 N=12 1.1606e-13 8.8005e-12 2.3076e-03 3.7499e-02 21/23

  22. Conclusion Implemented a Poisson’s equation solver using algorithm described 22/23

  23. References I A direct solver for variable coefficient elliptic pdes discretized via a composite spectral collocation method. Journal of Computational Physics , 242:460 – 479, 2013. ISSN 0021-9991. 23/23

Recommend


More recommend