5 equational proof
play

5- Equational Proof Ref: G. Tourlakis, Mathematical Logic , John - PowerPoint PPT Presentation

SC/MATH 1090 5- Equational Proof Ref: G. Tourlakis, Mathematical Logic , John Wiley & Sons, 2008. York University Department of Computer Science and Engineering 1 York University- MATH 1090 05-Equational Overview Equational Proof


  1. SC/MATH 1090 5- Equational Proof Ref: G. Tourlakis, Mathematical Logic , John Wiley & Sons, 2008. York University Department of Computer Science and Engineering 1 York University- MATH 1090 05-Equational

  2. Overview • Equational Proof • Some examples • Using assumptions in equational proofs York University- MATH 1090 05-Equational 2

  3. Equational Proof • An equational-style proof is a proof of the form:  A 2 (1) A 1 <annotation>  A 3 (2) A 2 <annotation> ... (n-1) A n-1  A n <annotation>  A n+1 (n) A n <annotation> A 1  A 2 , A 2  A 3 , ..., A n  A n+1 ⊢ A 1  A n+1 • Metatheorem . Corollary . In an equational proof from assumptions  , we • have  ⊢ A 1  A n+1 . Corollary . In an equational proof from assumptions  , we • have  ⊢ A 1 iff  ⊢ A n+1 . York University- MATH 1090 05-Equational 3

  4. Equational Proof Layout • An equational-style proof is a proof of the form: We write: Instead of  A 2 A 1 (1) A 1 <annotation>  <annotation>  A 3 (2) A 2 <annotation> A 2 ...  (n-1) A n-1  A n <annotation> <annotation>  A n+1 ... (n) A n <annotation> A n  <annotation> A n+1 York University- MATH 1090 05-Equational 4

  5. Equational Proof- framework • To Prove ⊢ A  B : Template 1 Template 2 Template 3 We write: Or, we write: Or, we write: an axiom or a A  B A proven theorem    <annotation> <annotation> <annotation> ... ... ...    <annotation> <annotation> <annotation> A  B B axiom or proven theorem York University- MATH 1090 05-Equational 5

  6. Equational Proof- framework • To Prove ⊢ A : Template 2 Template 3 Or, we write: Or, we write: an axiom or a proven theorem A   <annotation> <annotation> ... ...   <annotation> <annotation> axiom or proven A theorem York University- MATH 1090 05-Equational 6

  7. Equational Proof- framework • To Prove  ⊢ A : Template 2 Template 3 Or, we write: Or, we write: an axiom or a A  hypothesis or <annotation> proven theorem ...  <annotation>  ... <annotation> axiom or a  <annotation> hypothesis or proven theorem A York University- MATH 1090 05-Equational 7

  8. Useful tools:  , ┬ , and  • Some properties of  ⊢  (A  B)   A  B ⊢  (A  B)  A   B ⊢   A  A Double Negation • Some properties of ┬ and  ⊢ ┬    ⊢    ┬ ⊢ A  ┬ ⊢ A    A York University- MATH 1090 05-Equational 8

  9. Useful tools:  • Some properties of  ⊢ A  B  B  A Axiom 6: Symmetry of  ⊢ (A  B)  C  A  (B  C) Axiom 5 : Associativity of  ⊢ A  ( B  C)  (A  B)  C By above theorem, together with axiom 5 and 6, we can prove that in a chain of two ‘  ’ s, we can put the brackets around any subchain and we can move items around (similar to ‘  ’s). The general case of any number of ‘  ’ s also holds. ⊢ (A  B)  (C  D)  A  C  B  C  A  D  B  D York University- MATH 1090 05-Equational 9

  10. Useful tools:  and not  • Some properties of  ⊢ A  B   A  B Corollary: ⊢  A  B  A  B  B ⊢ A  (B  C)  A  B  A  C • Definition: • Property of York University- MATH 1090 05-Equational 10

  11. De Morgan theorems • De Morgan 1 ⊢ A  B   (  A   B) or ⊢  (A  B)   A   B • De Morgan 2 ⊢ A  B   (  A   B) or ⊢  (A  B)   A   B York University- MATH 1090 05-Equational 11

  12. Useful tools:  • ⊢ A  A  A • ⊢ A  ┬  A • ⊢ A     • Distributivity of  over  ⊢ A  (B  C)  (A  B)  (A  C) • Distributivity of  over  ⊢ A  (B  C)  (A  B)  (A  C) York University- MATH 1090 05-Equational 12

  13. Some more theorems! • ⊢ (A  B)  C  (A  C)  (B  C) • ⊢ A  (B  C)  (A  B)  (A  C) Ping-Pong Theorem: ⊢ A  B  (A  B)  (B  A) York University- MATH 1090 05-Equational 13

  14. Using Hypotheses (special axioms) in Equational Proofs • A ⊢ A  ┬ • Therefore using Leibniz, one can replace occurrences of hypothesis A by ┬ • Conversely, any occurrence of ┬ can be replaced by A. York University- MATH 1090 05-Equational 14

  15. Examples- important! • A, B ⊢ A  B • A  A ⊢ A • A ⊢ A  B • A  B ⊢ A • Metatheorem (Splitting/ Merging Hypotheses) For any formulae A, B, C and set  , we have  {A,B} ⊢ C  iff  {A  B} ⊢ C.  York University- MATH 1090 05-Equational 15

  16. Very important tools! • A, A  B ⊢ B Modus Ponens • A  B,  A  C ⊢ B  C Cut Rule • A  B,  A  B ⊢ B • A  B,  A ⊢ B • A,  A ⊢  • A  B, B  C ⊢ A  C Transitivity of  • A  C, B  D ⊢ A  B  C  D • A  C, B  C ⊢ A  B  C Proof by Cases • A  C,  A  C ⊢ C York University- MATH 1090 05-Equational 16

Recommend


More recommend