1 math(3)
So Solu lutio tion n of of fi firs rst t or orde der r ode ode 2 math(3)
Preface The first order differential equations may appear in one of the following forms: dy dx f x y ( , ) dy F x y dx , , 0 M x y dx ( , ) N x y dy ( , ) 0 3 math(3)
Methods of Solution of First Order ODE (1) Separable Differential Equations: dy g x ( ) dy dx h y dy ( ) g x dx ( ) c f x y ( , ) dx h y ( ) a x b y dx c x d y dy ( ) 0 M x y dx ( , ) N x y dy ( , ) 0 4 math(3)
Separable Differential Equations A separable differential equation can be expressed as the product of a function of x and a function of y . dy dx h y g x h y 0 Example: Multiply both sides by dx and divide dy dx 2 2 xy both sides by y 2 to separate the variables. (Assume y 2 is never zero.) dy y 2 x dx 2 2 y dy 2 x dx math(3) 5
Separable Differential Equations A separable differential equation can be expressed as the product of a function of x and a function of y . dy dx h y g x h y 0 Example: 2 y dy 2 x dx dy dx 2 2 xy Combined 1 2 y C x C constants of 1 2 integration dy 1 y 2 2 x dx x C 2 y 1 1 y y 2 y dy 2 x dx 2 2 x C x C math(3) 6
Initial conditions • In many physical problems we need to find the particular solution that satisfies a condition of the form y(x 0 )=y 0 . This is called an initial condition , and the problem of finding a solution of the differential equation that satisfies the initial condition is called an initial-value problem . math(3) 7
Example: dy dx 2 2 x 2 x 1 y e Separable differential equation 1 2 x dy 2 x e dx 2 1 y 1 2 u x 2 x dy 2 x e dx 2 1 y du 2 x dx 1 u dy e du 2 1 y 1 u tan y C e C 1 2 2 1 x tan y C e C 1 2 2 math(3) 8 1 x tan y e C Combined constants of integration
Example (cont.): dy dx 2 2 x 2 x 1 y e 2 1 x tan y e C We now have y as an implicit function of x . 2 1 x We can find y as an explicit tan tan y tan e C function of x by taking the tangent of both sides. 2 x y tan e C math(3) 9
Example dy Solve the IVP x y 1 , e y 0 1 dx Solution dy dy x y 1 x y 1 e e e dx dx x 1 y x 1 y e e c e dx e dy c x 0 y 1 1 1 c c 2 e x 1 y e 2 0 10 math(3)
Example dy 2 2 x y 2 x xy 2 y x 2 Solve the DE dx Solution dy 2 2 x y 2 x xy 2 y x 2 dx 2 ( x y 2) dy y x ( 2) ( x 2) dx 2 ( x y 2) dy ( x 2)( y 1) dx 1 1 2 y 2 x 2 1 1) dy dx c dy dx 2 ( y x x 2 y 1 x 2 y ln( y 1) ln x c x 11 math(3)
(2) DE ’ s Reducible to Separable This type takes the form: dy dx f ax ( by c ) u ax by c Put this transform the DE into separable one. 12 math(3)
Example dy dx 2 Solve the DE (2 x y 7) Solution l t e u 2 x y 7 differentiate w.r.t. x , we get: du u dx c 2 du dy 2 2 dx dx 1 tan u 1 x c du dx 2 2 2 2 u 1 2 x y 7 1 tan x c du dx 2 2 2 2 u 13 math(3)
Example dy Solve the DE dx sin( x y 1) Solution l et u x y 1 du u differentiate w.r.t. x , we get: dx c 1 sin du dy 1 1 sin u du dx dx dx c 2 1 sin u du dx 1 sin u 2 2 sec u (cos ) u sin u du dx c du dx 1 1 sinu tan u (cos u ) x c 14 math(3)
(3) Homogeneous DE ’ s dy y f This type takes the form: dx x The right hand side is a homogeneous function of degree zero. y u x This transform the DE into separable one. 15 math(3)
Example y y dy dy y dx x x Solve the DE: x y x e e dx x Solution y l et u y u x x du dx u x e differentiate w.r.t. x , we get: 1 dy du u e du dx c u x x dx dx du u u e ln x c u x u e dx 16 math(3)
Example y 1 dy dy x y x Solve the DE: y dx dx x y 1 x Solution y du 1 u l et u y u x x u x dx 1 u differentiate w.r.t. x , we get: 2 du 1 u u u x dx dy du 1 u u x 1 u du 1 dx dx dx c 2 1 u x du 1 u u x dx 1 1 u 1 2 tan u ln 1 u ln x c 2 17 math(3)
example The slope m of a curve is 0 where the curve 𝟐 + 𝒛 𝟑 . Find m as a 𝒆𝒛 crosses the y-axis, and 𝒆𝒚 = function of x. SOLUTION 𝑒𝑧 1+𝑧 2 = 𝑒𝑦 Integrate both sides 𝑒𝑧 𝒕𝒋𝒐𝒊 −𝟐 (y)=x+c 1+𝑧 2 = 𝒆𝒚 + 𝒅 y=0 at x=0 then c=0 and y=sinh(x) 18 math(3)
19 math(3)
Recommend
More recommend