Zeros of Ultraspherical Polynomials Kathy Driver University of Cape Town Visiting Vanderbilt University Joint work with Martin Muldoon Midwestern Workshop October 7, 2017 Kathy Driver Zeros of Ultraspherical Polynomials 2017 1 / 15
Ultraspherical Polynomials C ( λ ) n (1 − x ) 2 y ′′ − (2 λ + 1) xy ′ + n ( n + 2 λ ) y = 0 Kathy Driver Zeros of Ultraspherical Polynomials 2017 2 / 15
Ultraspherical Polynomials C ( λ ) n (1 − x ) 2 y ′′ − (2 λ + 1) xy ′ + n ( n + 2 λ ) y = 0 λ = 1 : Chebyshev polynomials of second kind Kathy Driver Zeros of Ultraspherical Polynomials 2017 2 / 15
Ultraspherical Polynomials C ( λ ) n (1 − x ) 2 y ′′ − (2 λ + 1) xy ′ + n ( n + 2 λ ) y = 0 λ = 1 : Chebyshev polynomials of second kind λ = 1 2 : Legendre polynomials Kathy Driver Zeros of Ultraspherical Polynomials 2017 2 / 15
Ultraspherical Polynomials C ( λ ) n (1 − x ) 2 y ′′ − (2 λ + 1) xy ′ + n ( n + 2 λ ) y = 0 λ = 1 : Chebyshev polynomials of second kind λ = 1 2 : Legendre polynomials ⌊ n / 2 ⌋ ( λ ) n − m C ( λ ) � m !( n − 2 m )!(2 x ) n − 2 m ( x ) = n m =0 Kathy Driver Zeros of Ultraspherical Polynomials 2017 2 / 15
Ultraspherical Polynomials C ( λ ) n (1 − x ) 2 y ′′ − (2 λ + 1) xy ′ + n ( n + 2 λ ) y = 0 λ = 1 : Chebyshev polynomials of second kind λ = 1 2 : Legendre polynomials ⌊ n / 2 ⌋ ( λ ) n − m C ( λ ) � m !( n − 2 m )!(2 x ) n − 2 m ( x ) = n m =0 2 of Jacobi polynomials P ( α,β ) Special case α = β = λ − 1 n Kathy Driver Zeros of Ultraspherical Polynomials 2017 2 / 15
Orthogonal Ultraspherical Polynomials C ( λ ) n , λ > − 1 / 2 Kathy Driver Zeros of Ultraspherical Polynomials 2017 3 / 15
Orthogonal Ultraspherical Polynomials C ( λ ) n , λ > − 1 / 2 { C ( λ ) } ∞ n =0 is orthogonal on ( − 1 , 1) for λ > − 1 / 2 n � 1 x k C ( λ ) ( x ) (1 − x 2 ) λ − 1 / 2 dx = 0 for k = 0 , . . . , n − 1 . n − 1 λ > − 1 2 ensures convergence of the integral Kathy Driver Zeros of Ultraspherical Polynomials 2017 3 / 15
Orthogonal Ultraspherical Polynomials C ( λ ) n , λ > − 1 / 2 { C ( λ ) } ∞ n =0 is orthogonal on ( − 1 , 1) for λ > − 1 / 2 n � 1 x k C ( λ ) ( x ) (1 − x 2 ) λ − 1 / 2 dx = 0 for k = 0 , . . . , n − 1 . n − 1 λ > − 1 2 ensures convergence of the integral The zeros of C ( λ ) n − 1 and C ( λ ) are interlacing: n − 1 < x 1 , n < x 1 , n − 1 < x 2 , n < · · · < x n − 1 , n < x n − 1 , n − 1 < x n , n < 1 Kathy Driver Zeros of Ultraspherical Polynomials 2017 3 / 15
Orthogonal Ultraspherical Polynomials C ( λ ) n , λ > − 1 / 2 { C ( λ ) } ∞ n =0 is orthogonal on ( − 1 , 1) for λ > − 1 / 2 n � 1 x k C ( λ ) ( x ) (1 − x 2 ) λ − 1 / 2 dx = 0 for k = 0 , . . . , n − 1 . n − 1 λ > − 1 2 ensures convergence of the integral The zeros of C ( λ ) n − 1 and C ( λ ) are interlacing: n − 1 < x 1 , n < x 1 , n − 1 < x 2 , n < · · · < x n − 1 , n < x n − 1 , n − 1 < x n , n < 1 The zeros of C ( λ ) ( x ) and (1 − x 2 ) C ( λ ) n − 1 ( x ) are interlacing n Kathy Driver Zeros of Ultraspherical Polynomials 2017 3 / 15
Zeros of C ( λ ) n , λ < − 1 / 2 λ < − 1 / 2 Kathy Driver Zeros of Ultraspherical Polynomials 2017 4 / 15
Zeros of C ( λ ) n , λ < − 1 / 2 λ < − 1 / 2 Is the sequence { C ( λ ) } ∞ n =0 orthogonal for any value(s) of λ < − 1 / 2? n Kathy Driver Zeros of Ultraspherical Polynomials 2017 4 / 15
Zeros of C ( λ ) n , λ < − 1 / 2 λ < − 1 / 2 Is the sequence { C ( λ ) } ∞ n =0 orthogonal for any value(s) of λ < − 1 / 2? n If the sequence is orthogonal for some λ < − 1 2 , what is the measure of orthogonality? Kathy Driver Zeros of Ultraspherical Polynomials 2017 4 / 15
Zeros of C ( λ ) n , λ < − 1 / 2 λ < − 1 / 2 Is the sequence { C ( λ ) } ∞ n =0 orthogonal for any value(s) of λ < − 1 / 2? n If the sequence is orthogonal for some λ < − 1 2 , what is the measure of orthogonality? Are the n zeros of C ( λ ) all real? Distinct? All in ( − 1 , 1)? n Kathy Driver Zeros of Ultraspherical Polynomials 2017 4 / 15
Zeros of C ( λ ) n , λ < − 1 / 2 λ < − 1 / 2 Is the sequence { C ( λ ) } ∞ n =0 orthogonal for any value(s) of λ < − 1 / 2? n If the sequence is orthogonal for some λ < − 1 2 , what is the measure of orthogonality? Are the n zeros of C ( λ ) all real? Distinct? All in ( − 1 , 1)? n If the zeros of C ( λ ) are all real and distinct n Kathy Driver Zeros of Ultraspherical Polynomials 2017 4 / 15
Zeros of C ( λ ) n , λ < − 1 / 2 λ < − 1 / 2 Is the sequence { C ( λ ) } ∞ n =0 orthogonal for any value(s) of λ < − 1 / 2? n If the sequence is orthogonal for some λ < − 1 2 , what is the measure of orthogonality? Are the n zeros of C ( λ ) all real? Distinct? All in ( − 1 , 1)? n If the zeros of C ( λ ) are all real and distinct n are the zeros of C ( λ ) n − 1 and C ( λ ) interlacing? n Kathy Driver Zeros of Ultraspherical Polynomials 2017 4 / 15
Behaviour of zeros of C ( λ ) as λ decreases below − 1 n 2 Kathy Driver Zeros of Ultraspherical Polynomials 2017 5 / 15
Behaviour of zeros of C ( λ ) as λ decreases below − 1 n 2 2 , two zeros of C ( λ ) As λ decreases below − 1 leave ( − 1 , 1) through − 1 and n 1 . Each time λ decreases below − 1 / 2 , − 3 / 2 , − 5 / 2 , ... two more zeros leave ( − 1 , 1) . When λ reaches 1 / 2 − [ n / 2] , no zeros of C ( λ ) remain in ( − 1 , 1) n Kathy Driver Zeros of Ultraspherical Polynomials 2017 5 / 15
Behaviour of zeros of C ( λ ) as λ decreases below − 1 n 2 2 , two zeros of C ( λ ) As λ decreases below − 1 leave ( − 1 , 1) through − 1 and n 1 . Each time λ decreases below − 1 / 2 , − 3 / 2 , − 5 / 2 , ... two more zeros leave ( − 1 , 1) . When λ reaches 1 / 2 − [ n / 2] , no zeros of C ( λ ) remain in ( − 1 , 1) n As λ decreases below the negative integer − [( n + 1) / 2] , two zeros of C ( λ ) n join the imaginary axis and another pair joins the imaginary axis each time λ decreases through successive negative integers. Kathy Driver Zeros of Ultraspherical Polynomials 2017 5 / 15
Behaviour of zeros of C ( λ ) as λ decreases below − 1 n 2 2 , two zeros of C ( λ ) As λ decreases below − 1 leave ( − 1 , 1) through − 1 and n 1 . Each time λ decreases below − 1 / 2 , − 3 / 2 , − 5 / 2 , ... two more zeros leave ( − 1 , 1) . When λ reaches 1 / 2 − [ n / 2] , no zeros of C ( λ ) remain in ( − 1 , 1) n As λ decreases below the negative integer − [( n + 1) / 2] , two zeros of C ( λ ) n join the imaginary axis and another pair joins the imaginary axis each time λ decreases through successive negative integers. For λ < 1 − n , C ( λ ) ( x ) has n distinct pure imaginary zeros. n Kathy Driver Zeros of Ultraspherical Polynomials 2017 5 / 15
Behaviour of zeros of C ( λ ) as λ decreases below − 1 n 2 2 , two zeros of C ( λ ) As λ decreases below − 1 leave ( − 1 , 1) through − 1 and n 1 . Each time λ decreases below − 1 / 2 , − 3 / 2 , − 5 / 2 , ... two more zeros leave ( − 1 , 1) . When λ reaches 1 / 2 − [ n / 2] , no zeros of C ( λ ) remain in ( − 1 , 1) n As λ decreases below the negative integer − [( n + 1) / 2] , two zeros of C ( λ ) n join the imaginary axis and another pair joins the imaginary axis each time λ decreases through successive negative integers. For λ < 1 − n , C ( λ ) ( x ) has n distinct pure imaginary zeros. n D-Duren 2000. A specific number of zeros of C ( λ ) collide at the endpoints n 1 and − 1 of the interval of orthogonality each time λ decreases through the next successive negative half-integer. The location and kinematics of the zeros at each stage of the process are known. Kathy Driver Zeros of Ultraspherical Polynomials 2017 5 / 15
Zeros of C ( λ ) n , − 3 / 2 < λ < − 1 / 2 − 3 / 2 < λ < − 1 / 2 Kathy Driver Zeros of Ultraspherical Polynomials 2017 6 / 15
Zeros of C ( λ ) n , − 3 / 2 < λ < − 1 / 2 − 3 / 2 < λ < − 1 / 2 2 for which all n zeros of C ( λ ) Only λ − range apart from λ > − 1 are real n Kathy Driver Zeros of Ultraspherical Polynomials 2017 6 / 15
Zeros of C ( λ ) n , − 3 / 2 < λ < − 1 / 2 − 3 / 2 < λ < − 1 / 2 2 for which all n zeros of C ( λ ) Only λ − range apart from λ > − 1 are real n Sequence { C ( λ ) } ∞ n =0 quasi-orthogonal order 2 on ( − 1 , 1) n Kathy Driver Zeros of Ultraspherical Polynomials 2017 6 / 15
Zeros of C ( λ ) n , − 3 / 2 < λ < − 1 / 2 − 3 / 2 < λ < − 1 / 2 2 for which all n zeros of C ( λ ) Only λ − range apart from λ > − 1 are real n Sequence { C ( λ ) } ∞ n =0 quasi-orthogonal order 2 on ( − 1 , 1) n Quasi-orthogonality:Riesz (Moment Problem), Fejer, Shohat, Chihara... � 1 x k C ( λ ) ( x ) (1 − x 2 ) λ +1 / 2 dx = 0 for k = 0 , . . . , n − 3 . n − 1 Kathy Driver Zeros of Ultraspherical Polynomials 2017 6 / 15
Zeros of C ( λ ) n , − 3 / 2 < λ < − 1 / 2 Kathy Driver Zeros of Ultraspherical Polynomials 2017 7 / 15
Recommend
More recommend