xenon1t
play

XENON1T for the XENON collaboration Rafael F. Lang Purdue - PowerPoint PPT Presentation

XENON1T for the XENON collaboration Rafael F. Lang Purdue University rafael@purdue.edu Aspen, January 30, 2013 Key Points sensitivity 1 event/ton/year, 210 -47 cm 2 data taking 2015 at Gran Sasso: approved & funded DAMA CoGeNT


  1. XENON1T for the XENON collaboration Rafael F. Lang Purdue University rafael@purdue.edu Aspen, January 30, 2013

  2. Key Points • sensitivity 1 event/ton/year, 2·10 -47 cm 2 • data taking 2015 at Gran Sasso: approved & funded DAMA CoGeNT CRESST CRESST CDMS Rafael F. Lang, Purdue: XENON1T 2

  3. The XENON Collaboration 50% of capital cost from NSF – thanks! 100 scientists from 16 institutions: University of California Los Angeles Willhelms Universität Münster Rice University Houston J. Gutenberg-Universität Mainz Purdue University Max-Planck-Institut für Kernphysik Columbia University New York Universität Zürich Universidade de Coimbra Laboratori Nazionali del Gran Sasso Subatech Nantes INFN e Università di Bologna NIKHEF Amsterdam Weizman Institute Rehovot Universität Bern Rafael F. Lang, Purdue: XENON1T 3

  4. Key Challenges XENON100 XENON1T • liquid xenon 161 kg ~3500 kg • background 5·10 -3 dru 5·10 -5 dru • krypton/xenon (19 ± 4) ppt <0.5 ppt • radon/xenon ~65 µBq/kg ~1 µBq/kg • electron drift 30 cm 1 m • cathode -16 kV -100 kV • filling-to-search several months 2 months Rafael F. Lang, Purdue: XENON1T 4

  5. Backgrounds Rafael F. Lang, Purdue: XENON1T 5

  6. The Need for a Muon Veto shielding of high-energy n insufficient: requires veto muon-induced neutrons, E>10MeV gammas from rock radioactivity, E<3MeV neutrons from rock radioactivity, E<10MeV Rafael F. Lang, Purdue: XENON1T 6

  7. Water Tank 10m high, Ø 9.6m • • construction start April 1 st • ~5 m 3 /h deionization, radon stripping, particulate removal ICARUS XENON1T Weizmann, LNGS WARP LNGS Hall B Rafael F. Lang, Purdue: XENON1T 7

  8. Water Черенков Muon Veto • 84 high QE 8” Hamamatsu R5912 PMTs • single PE trigger 4-fold coincident within 300ns → reject 99.5% n with m in veto 78% n with m outside Bologna, Mainz, Torino Rafael F. Lang, Purdue: XENON1T 8

  9. Water Черенков Muon Veto • 84 high QE 8” Hamamatsu R5912 PMTs • single PE trigger 4-fold coincident within 300ns m induced n from rock → reject 99.5% n with m in veto 100GeV, 10 -47 cm 2 SI single scatter, TPC 78% n with m outside single scatter, fiducial Bologna, Mainz, Torino • μ -induced n background 0.01 per year: negligible Rafael F. Lang, Purdue: XENON1T 9

  10. Cryostat & TPC • SS 316Ti • cryostat 1.5m high, Ø1.3m Columbia, Nikhef, Rice UCLA, Zürich • HV feedthrough demonstrated with grids up to 110kV Rafael F. Lang, Purdue: XENON1T 10

  11. Materials Screening • gamma-ray screening ~10 μ Bq/kg sensitivity • ICPMS LNGS, Zürich, MPIK, UCLA, Mainz • miniaturized proportional counter • 222 Rn emanation measurement few atom sensitivity • Neutron Activation Analysis Rafael F. Lang, Purdue: XENON1T 11

  12. PMT Arrays • scale up to 3” R11410 • 121+127 PMTs (~XENON100) • quantum efficiency @178nm > 28%, average 32.5% • gain 6·10 6 UCLA, Zürich, MPIK, Columbia • screen individual components Rafael F. Lang, Purdue: XENON1T 12

  13. PMT Arrays • scale up to 3” R11410 • 121+127 PMTs (~XENON100) • quantum efficiency @178nm > 28%, average 32.5% • gain 6·10 6 UCLA, Zürich, MPIK, Columbia • screen individual components • gain stability <2% in liquid xenon Rafael F. Lang, Purdue: XENON1T 13

  14. Cooling • heat load <50W • cooling outside tank: 2 redundant 200W Pulse Tube Refrigerators plus liquid nitrogen Columbia Rafael F. Lang, Purdue: XENON1T 14

  15. Xenon Handling very compact storage (2.7 m x 3.2 m x 3.0 m) 3.6 ton storage capacity 500W available for cooling store both liquid xenon (-108 ° C) or gaseous xenon (65 bar) keep high purity fill and recuperate liquid Subatech Rafael F. Lang, Purdue: XENON1T 15

  16. Xe Gas System • continuously re-circulate and purify • redundant setup • online purity monitoring Münster, Columbia Rafael F. Lang, Purdue: XENON1T 16

  17. Radon in Xenon • Goal: a few μBq /kg from 222 Rn in Xe • avoid and minimize sources of Rn • cryogenic adsorption of Rn on charcoal: slow down Rn sufficiently to decay (t 1/2 = 3.8 d) extensive R&D underway MPIK Rafael F. Lang, Purdue: XENON1T 17

  18. Krypton Removal 85 Kr beta decays (687keV), natural abundance 85 Kr/Kr ~ 10 -11 • target 0.5 ppt nat Kr in Xe (XENON100: (19 ± 4) ppt) • custom designed and build Kr distillation column • throughput 3 kg/h @ 10 4 separation Münster • 3m version built Rafael F. Lang, Purdue: XENON1T 18

  19. Krypton Analysis Rare Gas Mass Spectroscopy RGMS: nat Kr to ppt level atomic trap ATTA: 84 Kr to ppt level get 85 Kr from atmospheric abundance in situ: delayed coincidences branching 0.4% 10.8y MPIK, Columbia 85 Kr 0.4% b g S2 1.0 m s 99.6% Q b =687 keV 514 keV stable 85 Rb Rafael F. Lang, Purdue: XENON1T 19

  20. XENON1T Demonstrator a vertical slice of XENON1T • cooling  >130W to spare • e - lifetime  1 ms in 12 h • purification  • recirculation  Columbia, Rice, UCLA >800kg/day • HV  100kV stable • 1m drift Rafael F. Lang, Purdue: XENON1T 20

  21. Dedicated Zero-Field Setups no major systematic uncertainty anymore measured to 3keV nr Columbia, arXiv:1104.2587 and 1209.3658 electronic recoils measured to 2keV ee Rafael F. Lang, Purdue: XENON1T 21

  22. Reducing Systematics charge-based energy scale much better defined: ~(S2/S1) ~(S1/S2) S1 S2 arXiv:1202.1924 → measure charge yield (and light yield of course) more precisely • for nuclear and electronic recoils • • in situ and in dedicated experiments Rafael F. Lang, Purdue: XENON1T 22

  23. Dedicated R&D @Columbia,Zürich • optimized for <1mm position resolution • Compton coincidence ( g ) and neutron tagging (n) Columbia, Zürich Rafael F. Lang, Purdue: XENON1T

  24. Absolute (!) Rate Matching XENON100 AmBe calibration: systematics ~% level… in preparation Rafael F. Lang, Purdue: XENON1T 24

  25. Excellent Understanding Already XENON100: maximum deviation <2% in preparation Rafael F. Lang, Purdue: XENON1T 25

  26. How To Measure Poisson Process? so far: all effects assumed to give simple Poissonian, plus Gaussian PMT response (most conservative assumption) Purdue, Zürich Rafael F. Lang, Purdue: XENON1T 26

  27. In Situ Nuclear Energy Calibration water-proof deuterium-deuterium generator (NSD-Fusion) optimized for low fluxes XENON1T DD Neutron TPC Generator E n =2.5MeV q use this scatter Purdue δE~1keV nr @ 10keV nr Rafael F. Lang, Purdue: XENON1T 27

  28. XENON1T is Proven Technology commissioning late 2014, data taking 2015, limit ~2017: DAMA CoGeNT CRESST CRESST CDMS Rafael F. Lang, Purdue: XENON1T 28

  29. Rafael F. Lang, Purdue: XENON1T

  30. Calibration with 83m Kr 86 d 83 Rb 92% Q EC =910 keV 1.842 h 83m Kr 147 ns stable 83 Kr decay drift Rafael F. Lang, Purdue: XENON1T 30

Recommend


More recommend