X-ray reflection from ionised accretion discs – a new XSPEC model Michal Dovˇ ciak Astronomical Institute Academy of Sciences of the Czech Republic Prague Jiˇ r´ ı Svoboda Matteo Guainazzi European Space Astronomy Centre, Villafranca del Castillo From the Dolomites to the event horizon: Sledging down the Black Hole potential well Sesto Val Pusteria, 15 th – 19 th July 2013
StrongGravity logo explanation
Scheme of the lamp-post geometry observer ◮ spin a a ◮ inclination θ o corona ◮ height h ◮ photon index Γ h δ i δ e black hole ◮ luminosity L / L edd M ∆Φ ◮ mass M / M 8 r in ( M 8 = 10 8 M ⊙ ) Ω r accretion disc ◮ density n H out
Illumination geometry a = 1.0, Γ = 2.0 a = 1.0, Γ = 2.0 8 10 0 Heights 7 1.1 10 -2 1.5 6 2 N inc [arbitrary units] 10 -4 3 5 6 15 4 10 -6 q 100 Heights 3 100 10 -8 15 6 2 3 10 -10 2 1 1.5 1.1 10 -12 0 1 10 100 1000 1 10 100 1000 r [GM/c 2 ] r [GM/c 2 ] ◮ Wilkins DR & Fabian AC (2011) MNRAS , 414, 1269 ◮ Svoboda J, Dovˇ ciak M, Goosmann RW, Jethwa P , Karas V, Miniutti G & Guainazzi M (2012) A&A , 545, A106 ◮ Wilkins DR & Fabian AC (2012) MNRAS , 424, 1284
Emission directionality a = 1 , θ = 30 ◦ , Γ = 2 0 0.2 0.4 0.6 0.8 1 0.00 0.25 0.50 0.75 1.00 20 incident emission 10 angle µ i angle µ e 16 5 h [GM/c 2 ] 12 y 0 8 −5 4 −10 1 1 10 100 −10 −5 0 5 10 r [GM/c 2 ] x emission directionality M ( µ i , µ e ) ◮ Svoboda J, Dovˇ ciak M, Goosmann RW & Karas V (2009) A&A , 507, 1
Emission directionality a = 1 , θ o = 30 ◦ , h = 3 , Γ = 2 G — transfer function M — angular directionality 0.00 0.25 0.50 0.75 1.00 3 4 5 6 7 10 10 5 5 0 0 y y −5 −5 −10 −10 −10 −5 0 5 10 −10 −5 0 5 10 x x relativistic effects local re-processing
Emission directionality a = 1 , θ o = 30 ◦ , h = 3 , Γ = 2 G — transfer function M — angular directionality 0.00 0.25 0.50 0.75 1.00 3 4 5 6 7 10 10 5 5 0 0 y y −8.00 −6.75 −5.50 −4.25 −3.00 10 −5 −5 5 −10 −10 y 0 −10 −5 0 5 10 −10 −5 0 5 10 x x −5 relativistic effects local re-processing −10 −10 −5 0 5 10 G × R × M x
Lamp-post geometry versus broken power law h = 1.5 GM/c 2 , θ o =30 ° , q = 6.2, r b = 5 GM/c 2 h = 2 GM/c 2 , θ o =30 ° , q = 4.3, r b = 10 GM/c 2 0.3 0.4 LPI LPI BPI BPI LPN LPN 0.3 0.2 Photon flux Photon flux 0.2 0.1 0.1 0 0 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 E [keV] E [keV] For low heights: → broken power-law is not a good approximation of lamp-post geometry → line shape is greatly influenced by the emission directionality → this is mainly due to its dependence on the incident angle
Disc ionization Current Theoretical Model 100 reflionx ξ = 1000 10 ξ = 10 Photons cm −2 s −1 keV −1 1 0.1 0.01 2 4 6 8 10 Energy (keV) dovciak 23−Feb−2013 18:17 ◮ Ross RR & Fabian AC (2005), MNRAS , 358, 211 ◮ Svoboda J, Dovˇ ciak M, Goosmann RW, Jethwa P , Karas V, Miniutti G & Guainazzi M (2012) A&A , 545, A106
Disc ionization Dependence on height: 4 h [GM/c 2 ] 3 1.5 ξ ∼ L / L edd 3 2 10 M n H 100 1 log ξ 0 L 0 . 001 L edd = -1 10 8 M ⊙ M = -2 10 15 cm − 3 n H = -3 -4 1 10 100 a = 1 , Γ = 2 . 0 r [GM/c 2 ]
Disc ionization Dependence on photon index: 4 Γ 1.4 3 ξ ∼ L / L edd 2.0 2.6 2 M n H 1 log ξ 0 L 0 . 001 L edd = -1 10 8 M ⊙ M = -2 10 15 cm − 3 n H = -3 -4 1 10 100 a = 1 , h = 3 r [GM/c 2 ]
Disc ionization Dependence on photon index: 4 Γ 1.4 3 ξ ∼ L / L edd 2.0 2.6 2 M n H 1 log ξ 0 L 0 . 001 L edd = -1 10 8 M ⊙ M = -2 10 15 cm − 3 n H = -3 -4 1 10 100 a = 1 , h = 10 r [GM/c 2 ]
Disc ionization Dependence on density profile: 4 Γ = 2.0, q n = 0 Γ = 2.0, q n = -2 3 Γ = 2.6, q n = -2 ξ ∼ L / L edd 2 M n H 1 log ξ 0 L 0 . 001 L edd = -1 10 8 M ⊙ M = -2 10 15 cm − 3 n H = -3 -4 1 10 100 a = 1 , h = 10 r [GM/c 2 ] n H ∼ r q n
KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.
KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. ◮ scales the primary M/M8 1. 1e-8 1e+3 flux (given in L edd ) GM/c 2 height 3. 1.1 100. ◮ scales the incident flux (as D − 1 ) PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 ◮ scales the ionization Np:Nr 0. 0. 10. ◮ scales the reflected density 1. 1e-8 1e+8 flux den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.
KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 ◮ affects the primary GM/c 2 height 3. 1.1 100. flux (light bending PhoIndex 2. 1.4 3.3 model) L/Ledd 0.001 1e-10 1e+10 ◮ affects the incident flux (radial structure) Np:Nr 0. 0. 10. ◮ affects the ionization density 1. 1e-8 1e+8 den prof 0. -5. 0. ◮ affects the reflected flux abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.
KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.
KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 ◮ scales the primary L/Ledd 0.001 1e-10 1e+10 flux Np:Nr 0. 0. 10. ◮ scales the incident density 1. 1e-8 1e+8 flux den prof 0. -5. 0. ◮ scales the ionization abun 1. 0.1 20. ◮ scales the reflected zshift 0. -0.999 10. flux limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.
KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 may be used to estimate L/Ledd 0.001 1e-10 1e+10 discrepancy between the Np:Nr 0. 0. 10. primary and reflected flux density 1. 1e-8 1e+8 (e.g. due to the anisotropy den prof 0. -5. 0. or obscuration of the primary radiation) abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.
KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 ◮ affect the ionization den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.
KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.
KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.
KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.
KYREFLIONX parameters a/M GM/c 0.9982 0. 1. theta o deg 30. 0. 89. GM/c 2 rin 1. 1. 1000. ms 1. 0. 1. GM/c 2 rout 400. 1. 1000. M/M8 1. 1e-8 1e+3 GM/c 2 height 3. 1.1 100. PhoIndex 2. 1.4 3.3 L/Ledd 0.001 1e-10 1e+10 Np:Nr 0. 0. 10. density 1. 1e-8 1e+8 den prof 0. -5. 0. abun 1. 0.1 20. zshift 0. -0.999 10. limb 0. 0. 2. tab 2. 1. 2. sw 2. 1. 2.
KYREFLIONX example Current Theoretical Model 10 keV 2 (Photons cm −2 s −1 keV −1 ) 1 0.1 0.01 0.1 1 10 100 Energy (keV) dovciak 19−Jul−2013 08:47
Dynamic spectrum – ionized reflection E × F E
Recommend
More recommend