x ray laser wakefield acceleration in nanotubes
play

X-ray Laser Wakefield Acceleration in Nanotubes Sahel Hakimi 1 , - PowerPoint PPT Presentation

X-ray Laser Wakefield Acceleration in Nanotubes Sahel Hakimi 1 , Xioamei Zhang 2 , Deano Farinella 1 , Calvin Lau 1 , Youngmin Shin 3 , Jonathan Wheeler 4 , Peter Taborek 1 , Gerard Mourou 4 , Franklin Dollar 1 , Toshiki Tajima 1 1 University of


  1. X-ray Laser Wakefield Acceleration in Nanotubes Sahel Hakimi 1 , Xioamei Zhang 2 , Deano Farinella 1 , Calvin Lau 1 , Youngmin Shin 3 , Jonathan Wheeler 4 , Peter Taborek 1 , Gerard Mourou 4 , Franklin Dollar 1 , Toshiki Tajima 1 1 University of California, Irvine, CA, United States 2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China 3 Northern Illinois University and Fermi National Accelerator Laboratory, US 4 Ecole Polytechnique, France Acceleration in Crystals and Nanostructures 2019

  2. Outline v Motivation and Background v Simulation Results Ø X-Ray laser driven wakefield Ø Scalings Ø Addition of Lattice force v Discussion and conclusions Acceleration in Crystals and Nanostructures 2019 1

  3. Advantage of Plasma Accelerators SLAC’s 2 miles long LINAC • Material breakdown (~100MV/m) • Increasing size and cost or • Increasing acceleration gradients ~ 10’s of microns long UCI’s wakefield experiment 𝐹 "# = 𝑛 & 𝑑𝜕 ) n . (cm 23 ) V = 96 m ~100GV/m 𝑓 2

  4. Laser-Driven Plasma Accelerators … lasers of power density 10 18 W/cm 2 ... … plasmas of densities 10 18 cm -3 ... 3

  5. Chirped Pulse Amplification Invention of CPA won the Nobel prize in 2018 4

  6. Chirped Pulse Amplification 5 Tajima T, Mourou G. PRAB. 2002

  7. Laser Wakefield Acceleration (LWFA) Bubble regime 6 Nature 2004

  8. Current Challenges • Laser defocusing [7.8GeV, Phys. Rev. Lett. 122, 084801 (2019)] – Guiding • Dephasing – Density tailoring • Beam loading – Electron beam shaping 7

  9. ̅ ̅ ̅ ̅ Physics of LWFA 𝜇 ) F 𝑤 DEF& 𝑤 GHIJ) 𝑤 DEF& 𝑤 GHIJ) 𝑓𝐹 • Ponderomotive Force 𝑏 < = 𝑛 & 𝜕 = 𝑑 • Density perturbation > = 4𝜌𝑜 & 𝑓 > 𝜕 ) 𝑛 & • Wake creation 𝜇 ) = 2𝜌𝑑 • Particle trapping 𝜕 ) 8

  10. ̅ Physics of LWFA • Wake velocity 𝑤 GHIJ) = 𝑑 1 − (𝑜 & /𝑜 N ) 𝑜 & is the electron density in plasma (10 Z[2Z\ 𝑑𝑛 23 ) 𝑜 N is the critical density of the laser (10 >Z 𝑑𝑛 23 ) • Energy gain P Q > 𝑛 & 𝑑 > ( 𝜗 & = 2𝑏 < P R ) > 𝑎 H = 𝜌𝑥 < • Acc. length P Q P Q 𝑀 )T ∝ V/W ; 𝑀 T ∝ V/W ; 𝜇 P R P R Dephasing Depletion Diffraction F 9

  11. TeV/cm acc. gradient • Energy gain and acc. length dependence on target density • Increasing energy gain via critical density Optical laser (800nm) X-ray laser (1nm) ×10 b 𝜗 & = [1MeV](𝑜 N ) ×10 3 𝑜 N ≈ 10 >Z cm 23 𝑜 N ≈ 10 >d cm 23 𝑜 & P Q Z 𝑜 & ≈ 10 Z[ cm 23 𝑜 & ≈ 10 >Z cm 23 𝑀 ∝ P R P R 𝑜 N 𝑜 & = 10 b ⁄ 𝑜 N 𝑜 & = 10 3 ⁄ 10

  12. Next Generation X-ray Lasers 11 Wheeler J, Mourou G, Tajima T. Technology and Applications of Advanced Accelerator Concepts 2016

  13. Thin Film Compression 12 Mourou G, Mironov S, Khazanov E, Sergeev A. The European Physical Journal Special Topics. 2014

  14. Relativistic Compression RelaAvisAc Compression 13 Naumova NM, Nees JA, Sokolov IV, Hou B, Mourou GA. Physical review letters. 2004

  15. Advantages of Nanotubes • High density Higher acceleration gradient • Provides a mean to guide laser and the accelerated beam • Avoid slow-down of electrons due to collisions • Intact in time of ionization 14 Lazarowich RJ, Taborek P, Yoo BY, Myung NV. Journal of applied physics. 2007

  16. Epoch Simulations • QED 2D Particle-in-cell simulations – Developed by Chris Brady, Keith Bennett, Christopher Ridgers, Roland Duclous – Available for free and is open source • Examined 1 and 1000 nm wavelengths • Simulations performed on the UCI HPC cluster 15

  17. Simulation Parameters • Moving box simulation with 3000 x 500 cells – 60 x 100 nm ( μ m) box size • 10 particles per cell • Normalized vector potential a 0 = 4 – Corresponding to intensity of 2.2 x 10 25 Wcm -2 (5 x 10 18 Wcm -2 ) • Focal size of 5 λ L • Plasma wall density of 5 x 10 24 cm -3 (5 x 10 18 cm -3 ) 16 Zhang X, Tajima T, Farinella D, Shin Y, Mourou G, Wheeler J, Taborek P, Chen P, Dollar F, Shen B. PRAB. 2016

  18. Guided vs. Unguided Nanotube radius of 5 nm 17 Zhang X, Tajima T, Farinella D, Shin Y, Mourou G, Wheeler J, Taborek P, Chen P, Dollar F, Shen B. PRAB. 2016

  19. Guided vs. Unguided 18 Zhang X, Tajima T, Farinella D, Shin Y, Mourou G, Wheeler J, Taborek P, Chen P, Dollar F, Shen B. PRAB. 2016

  20. LWFA comparison 1 nm and 1000 nm laser confined in tubes of diameter 5 λ L and intensity a 0 = 10 Maintaining laser wavelength to plasma wavelength ratio preserves wakefield structure 19 Zhang X, Tajima T, Farinella D, Shin Y, Mourou G, Wheeler J, Taborek P, Chen P, Dollar F, Shen B. PRAB. 2016

  21. Scalings Increasing radius ratio decreases effective density 20 Zhang X, Tajima T, Farinella D, Shin Y, Mourou G, Wheeler J, Taborek P, Chen P, Dollar F, Shen B. PRAB. 2016

  22. Scalings The wakefield scales with the tube wall density as 𝐹 f ∝ <.jd in the low density 𝑜 gJh& region, which in principle agrees with the theory expected as 𝐹 f ∝ 𝑜 in the uniform density case 21 Zhang X, Tajima T, Farinella D, Shin Y, Mourou G, Wheeler J, Taborek P, Chen P, Dollar F, Shen B. PRAB. 2016

  23. Scalings As intensity increases, effective density increases due to larger plasma wavelength Similar scalings found for different radius ratios 22 Zhang X, Tajima T, Farinella D, Shin Y, Mourou G, Wheeler J, Taborek P, Chen P, Dollar F, Shen B. PRAB. 2016

  24. Dispersion Relation • Dispersion relation is modified by the transverse optical frequency W = 𝐿 v W m no m nR > 𝜗 𝑙, 𝜕 = 1 − W − W ; 𝜕 "t m W 2m pq m W 2F r W s R 𝑛 Transverse Optical Frequency 23 Tajima, T. and Ushioda Phys. Rev. B 1978

  25. Lattice Force simulation and Parameters • EPOCH PIC code • Introduction of ionic structure • Addition of the ionic lattice force 𝑒x 𝑤 P 𝑦 = 𝑟 𝑦 − 𝐿 v } 𝑤 P × } 𝑒𝑢 z 𝐹 + x 𝐶 z 𝑛 𝑦 P − 𝑦 P< z 𝑦 𝑛 • Parameters 𝜇 = = 10nm; 125eV • 𝑜 N = 10 >‚ cm 23 ; 𝑜 & = 10 >3 cm 23 • 24 Hakimi S, Nguyen T, Farinella D, Lau CK, Wang HY, Taborek P, Dollar F, Tajima T. Physics of Plasmas. 2018

  26. Simulation Results without phonon frequency with phonon frequency E „ E … . P ∗ „. 3× P „ˆ 25 Hakimi S, Nguyen T, Farinella D, Lau CK, Wang HY, Taborek P, Dollar F, Tajima T. Physics of Plasmas. 2018

  27. Conclusions • X-ray photons: ℏ𝜕 ≫ 𝜚 & – Metallic plasma at solid density • Time-scales – Passage of X-ray Pulse: attosecond – Ionization: femtosecond • Atom stabilization • Raster 26

  28. Conclusions • Recent proposal of TFC (2014) + RC (2004) – Allows high intensity ultrafast X-ray laser • Crystal + Nanotubes – Wakefield acceleration • 𝐹 • ~ Ž.• TeV acc. on a chip •‘ • 𝜗 ~ 1eV over 2cm 27

  29. Thank you Acceleration in Crystals and Nanostructures 2019

Recommend


More recommend