Laser-Wakefield Acceleration Application to Endoscopic Oncology Scott Nicks, Toshi Tajima, Dante Roa, Ales Necas Workshop on Beam Acceleration in Crystals and Nanostructures June 25, 2019
Laser Wakefield Acceleration (LWFA) π ππ β« π ππππ β’ Collective force ~π 2 β’ Coherent, robust β’ Coherent, smooth, robust (not stochastic) β’ No turbulence β’ Driven by laser or beams β’ Deep-ocean tsunami β’ High acceleration gradient: ~ GeV/cm β’ Wake phase velocity π€ πβ β« bulk velocity π€ ππ£ππ π ππ ~π ππππ π€ πβ β« π€ ππ£ππ β’ Wavebreak No bulk coupling β’ Turbulence β’ Near-shore tsunami π€ ππ£ππ π€ πβ T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43 , 267 (1979) E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81 , 1229 (2009) 2
Laser Wakefield Theory π ππ β« π ππππ Laser critical density β’ Ξ€ ββ° β« π π π 2 Laser group velocity: π€ π = π 1 β π π π π Plasma density β’ Wake phase velocity π€ πβ = π€ π β’ Low-density regime ο π€ πβ β« π€ ππ£ππ β’ High-density regime ο π€ πβ ~π€ ππ£ππ β’ Electron energy gain: ββ° = 2π π π 2 π ππ ~π ππππ Ξ€ π π π π ββ° β² π π π 2 β’ Robust wave saturation ο Tajima-Dawson field: πΉ ππΈ = πππ€ πβ π 3
Wakefields as Tsunamis 1 Pristine wakefield Bulk solid-target interaction (TNSA) 1 Plasma wavelength π€ π β 0 π€ π β« π€ ππ£ππ Black wave Blue wave Clean, no dredging Extensive sediment dredging, mass transport ProtoThema.gr SurferToday.com 4 1 B. M. Hegelich et al., Nature 439 , 441-444 (2006)
Linear accelerator Endoscopic Oncology Cone β’ Bring radiation directly to tissue β’ Endoscopic or intra-operative β’ No collateral tissue damage Cone β’ Low-energy particles β’ LWFA ο LINAC alternative Professor Dante Roa, Radiation Oncology, UCI A. Giulietti, ed., Laser-Driven Particle Acceleration Towards Radiobiology and Medicine , 2016 5 A. S. Beddar et al. Med. Phys. 33 , 1476 (2006)
Fiber lasers for LWFA β’ Coherent Amplification Network (CAN) β’ Optical lasers β’ Many lasers together β’ Technology reached critical stage β’ Fiber laser for endoscopic LWFA G. Mourou, W. Brocklesby, T. Tajima, and J. Limpert, Nat. Photonics 7 , 258 (2013) 6
Nanomaterials for LWFA Nanotube Porous alumina on SI substrate Nanomaterials: Uniform ο Wakefield guide Solid ο Optical laser π π N. V. Myung, J. Lim, J-P Fleurial, M. Yun, W. West, and D. Choi, Nanotech. 15 , 833 (2004) X. Zhang et al., Phys. Rev. Accel. Beams 19 , 101004 (2016) 7 T. Tajima, Eur. Phys. J. Spec. Top. 223 , 1037 (2014)
LWFA for Endoscopic Oncology Paper and Collaborators β’ Putting the pieces together ο low-energy electrons ο near-critical density LWFA ο Nanomaterial provides density/guide ο CAN laser (optical) for endoscopy Submitted, Phys. Rev. Accel. Beams (2019) β’ Next steps ο Wakefield physics at Ξ€ π π π π β 1 ο Scaling: density, intensity ο Self-modulation 8
Modeling Critical-Density Wakefields β’ β’ Critical density ο π€ π = 0 1D 3V Particle-in-cell (PIC) code β’ β’ Laser enters plasma ο sheath formation Ti:Sapphire laser, π = 1 ΞΌm β’ β’ Laser πΉ π§ = πΉ 0 sin ππ¦ β ππ’ β π β π¦, π’ Sheath accelerates electrons β’ Simulation ο laser injected from vacuum β’ β π¦, π’ ο flat-top, resonant profile Early Impedance-matching boundary Later Uniform Plasma Slab Sheath Laser (dispersed) Laser Electrons π¦ = 0 π¦~π π π¦ = 0 9
Density Scaling of Electron Energy β’ Electron energy gain: ββ° = 2π π π 2 Ξ€ π π π π β’ Ξ€ Linear dependence on π π π π β’ π π π π ο linear ββ° trend agrees Ξ€ Scan over β’ Low density ο wakefield not constant ο deviation from linearity 10
Low-Density Regime β’ Ξ€ Typical wakefield regime, π π π π = 10 β’ Clear, robust wakefield Wakefield πΉ π¦ β’ Wakefield ο train of trapped electrons β’ βBlueβ wave ο no bulk coupling/turbulence Electron phase Laser space πΉ π§ Plasma wavelength π π = 2ππ π π 11
High-Density Regime β’ β’ Streams build up ο sheath exhausted Ξ€ Critical density regime, π π π π = 1 β’ β’ π€ π = 0 ο sheath oscillation Novel regime β’ βBlackβ wave ο bulk coupling β’ Sheath ο low-energy electron streams Later Early Sheath πΉ π¦ Sheath πΉ π¦ 12
Transition Regime β’ Ξ€ Intermediate regime, π π π π = 5 β’ Modest electron trapping Proto-sheath πΉ π¦ πΉ π¦ β’ Transition ο sheath physics beginning β’ βGreyβ wave 13
Intensity Scaling of Electron Energy 1 2 β 1 β’ Ξ€ 2 Electron energy gain in high-density regime β’ Ponderomotive potential π π 0 = 1 + π 0 β’ π 0 ο Normalized laser intensity β’ Density fixed, ββ° scanned over π 0 β’ Energy gain π 0 dependence: ββ° β π π 0 β’ ββ° compared ο π π 0 Ξ€ Ξ€ π π π π = 10 π π π π = 3 14
Self-Modulation β’ Fiber lasers ο long pulse better β’ Ξ€ Ξ€ Pulse length π π π π scanned, π π π π = 10 , π 0 = 1 β’ Self-modulation: long pulse breaks ο small pulses β’ Long pulses ο Laser/wakefield modulated Ξ€ Ξ€ Ξ€ π π π π = 0.5 π π π π = 3 π π π π = 5 J. Krall, A. Ting, E. Esarey, and P. Sprangle, in Proceedings of the 1993 Particle Accelerator Conference , Vol. 4 E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81 , 1229 (2009) 15
Self-Modulation at the Critical Density Long pulse β’ Critical plasma + long laser pulse π π = 8π π β’ π€ π = 0 ο huge sheath oscillation Sheath Later streams β’ Violent sheath ο huge electron acceleration from sheath β’ Laser ο initial burst β’ Sheath ο later streams Resonant pulse Initial burst from laser 16
Electron Tissue Penetration β’ Critical plasma + long laser pulse π π = 8π π β’ Electron energy spectrum ο tissue penetration β’ Continuous slowing-down approximation (CSDA) β’ Penetration ο tuned by Ξ€ π π π π , π 0 17
Linear accelerator Summary Cone β’ Laser evolution ο CPA to fiber β’ Endoscopic therapy ο keV electrons β’ Fiber ο tiny keV accelerator Cone β’ Technology exists ο quick deployment β’ Low-hanging fruit for large medical benefit β’ Critical-density wakefield ο Novel physics regime 18
Recommend
More recommend