IIW Annual Assembly 2011 SG212: the physics of welding Electric welding arc modeling with the 3D solver OpenFOAM - A comparison of different electromagnetic models - Isabelle Choquet,¹ Alireza J. Shirvan,¹ and Håkan Nilsson² ¹University West, Dep. of Engineering Science, Trollhättan, Sweden ²Chalmers University of Technology, Dep. of Applied Mechanics, Gothenburg, Sweden IIW Doc.212-1189 -11
• Cont ntext / / Motiv tivation: better understand the heat source • So Software Open enFOAM-1.6 .6.x .x - open source CFD software - C++ library of object-oriented classes for implementing solvers for continuum mechanics IIW Doc.212-1189 -11
IIW intermediate meeting, Trollhättan, Doc. XII-2017-11 ” Numerical simulation of Ar- x%CO₂ shielding gas and its effect on an electric welding arc ” Influence of BC on anode an cathode Influence of gas composition Here focus on a comparison of different electromagnetic models IIW Doc.212-1189 -11
Model: thermal fluid part Main assumptions (plasma core): • one-fluid model • local thermal equilibrium • mechanically incompressible and thermally expansible • steady flow • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11
Model: thermal fluid part Main assumptions (plasma core): • one-fluid model • local thermal equilibrium • mechanically incompressible and thermally expansible • steady flow • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11
Model: thermal fluid part Main assumptions (plasma core): • one-fluid model • local thermal equilibrium • mechanically incompressible and thermally expansible • steady flow • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11
Model: thermal fluid part Main assumptions (plasma core): • one-fluid model • local thermal equilibrium ρ T • mechanically incompressible, and thermally ( ) expansible • steady flow • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11
Model: thermal fluid part Argon plasma density as function of temperature. IIW Doc.212-1189 -11
Model: thermal fluid part Main assumptions: • one-fluid model • local thermal equilibrium ( T ) • mechanically incompressible, and thermally expansible • plasma optically thin • steady • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11
Model: thermal fluid part Main assumptions: • one-fluid model • local thermal equilibrium ( T ) • mechanically incompressible, and thermally expansible • plasma optically thin • steady laminar flow • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11
Model: electromagnetic part • 3D model with • 2D axi-symmetric models: Electric potential formulation Magnetic field formulation IIW Doc.212-1189 -11
Model: electromagnetic part • 3D model with V , A E , J , B • 2D axi-symmetric models: Electric potential formulation Magnetic field formulation IIW Doc.212-1189 -11
Model: electromagnetic part • 3D model with V , A E , J , B • 2D axi-symmetric models: Electric potential formulation V E , J B θ Magnetic field formulation IIW Doc.212-1189 -11
Model: electromagnetic part • 3D model with V , A E , J , B • 2D axi-symmetric models: Electric potential formulation V E , J B θ Magnetic field formulation B E , J θ IIW Doc.212-1189 -11
Model: electromagnetic part • 3D model with V , A E , J , B • 2D axi-symmetric models: Electric potential formulation V E , J B θ Magnetic field formulation B E , J θ M.A. Ramírez , G. Trapaga and J. McKelliget (2003). A comparison between two different numerical formulations of welding arc simulation. Modelling Simul. Mater. Sci. Eng , 11 , pp. 675-695. IIW Doc.212-1189 -11
Test case: Tungsten Inert Gas welding Applied current: I=200A Ar shielding Shielding gas gas inlet inlet u 2 . 36 m / s Picture of a TIG torch Sketch of the cross section of a TIG torch IIW Doc.212-1189 -11
r μ B ( A ) 0 B J ( l ) l dl θ θ θ axial r 0 Magnetic field magnitude calculated with the electric potential formulation (left) and the 3D approach (right).
r μ B ( A ) 0 B J ( l ) l dl θ θ θ axial r 0 Why ? Magnetic field magnitude calculated with the electric potential formulation (left) and the 3D approach (right).
Maxwell’s equations B Gauss’ law for magnetism: 0 ε μ μ Ampère’s law: E B J 0 0 t 0 Faraday’s law: B E t Gauss’ law: ε 1 E q 0 tot + charge conservation 0 q tot J t J J J J J J + generalized Ohm’ s law drift ind Hall diff ther IIW Doc.212-1189 -11 •
Assumptions (plasma core) 8 m 10 L local electro-neutrality Debye c quasi-steady electromagnetic phenomena IIW Doc.212-1189 -11
Maxwell’s equations B Gauss’ law for magnetism: 0 ε μ μ Ampère’s law: E B J 0 0 0 t Faraday’s law: B E t Gauss’ law: ε 1 E q 0 tot 0 + charge conservation q tot J 0 t 0 J J J J J J + generalized Ohm’ s law drift ind Hall diff ther 0 0 IIW Doc.212-1189 -11 •
Assumptions (plasma core) 8 m 10 L local electro-neutrality Debye c μ L , t E J quasi-steady electromagnetic c c 0 t phenomena IIW Doc.212-1189 -11
Maxwell’s equations B Gauss’ law for magnetism: 0 ε μ μ E B J Ampère’s law: 0 0 t 0 0 Faraday’s law: B E t 0 Gauss’ law: ε 1 E q 0 tot 0 + charge conservation q tot J 0 t 0 J J J J J J + generalized Ohm’ s law drift ind Hall diff ther 0 0 IIW Doc.212-1189 -11 •
Assumptions (plasma core) 8 m 10 L local electro-neutrality Debye c μ L , t E J quasi-steady electromagnetic c c 0 t phenomena σ σ / 1 J J B J E Lar Lar coll Hall drift n e IIW Doc.212-1189 -11
Maxwell’s equations B Gauss’ law for magnetism: 0 ε μ μ E B J Ampère’s law: 0 0 t 0 0 Faraday’s law: B E t 0 ε Gauss’ law: 1 E q 0 tot 0 + charge conservation q tot J 0 t 0 J J J J J J + generalized Ohm’ s law drift ind Hall diff ther 0 0 0 IIW Doc.212-1189 -11 •
Assumptions (plasma core) 8 m 10 L local electro-neutrality Debye c μ L , t E J quasi-steady electromagnetic c c 0 t phenomena σ σ / 1 J J B J E Lar Lar coll Hall drift n e Re σ 1 J u B J m ind drift IIW Doc.212-1189 -11
Maxwell´s equations B Gauss’ law for magnetism: 0 ε μ μ E B J Ampère’s law: 0 0 t 0 0 Faraday’s law: B E t 0 ε Gauss’ law: 1 E q 0 tot 0 + charge conservation q tot J 0 t 0 J J J J J J + generalized Ohm’ s law drift ind Hall diff ther 0 0 0 0 IIW Doc.212-1189 -11 •
Maxwell´s equations B Gauss’ law for magnetism: 0 ε μ μ E B J Ampère’s law: 0 0 t 0 0 Faraday’s law: B E t 0 ε Gauss’ law: 1 E q 0 tot 0 + charge conservation q tot J 0 t 0 J J J J J J + generalized Ohm’ s law drift ind Hall diff ther 0 0 0 0 IIW Doc.212-1189 -11 •
Recommend
More recommend